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Low-Flow Characteristics of Streams from Wailua to

Hanapepe, Kaua‘i, Hawai‘i
By Chui Ling Cheng

Abstract

The purpose of this study is to characterize streamflow
availability under natural (unregulated) low-flow conditions for
streams in southeast Kaua‘i, Hawai‘i. The nine main study-area
basins, from north to south, include Wailua River, Hanama‘ulu,
Nawiliwili, Pa‘ali, Hule‘ia, Waikomo, Lawa‘i, and Wahiawa
Streams, and Hanap@p€ River. The results of this study can be used
by water managers to develop technically sound instream-flow
standards for the study-area streams.

Low-flow characteristics for natural streamflow conditions
were represented by flow-duration discharges that are equaled
or exceeded between 95 and 50 percent of the time. Short-
term continuous-record stream-gaging stations that monitored
low flows on Waiahi and right branch Lawa‘i Streams were
established to serve as potential index stations for partial-record
sites in the study area. Continuous-record stream-gaging station
on Hanapépé River monitored natural flow during calendar year
2017 and the streamflow record during that period was used to
estimate low-flow characteristics at the station. Partial-record
sites were established on 3 main streams and 15 tributary streams,
upstream from existing surface-water diversions. Low-flow
characteristics were determined using historical and current
streamflow data from continuous-record stream-gaging stations
and miscellaneous sites, as well as additional data collected as
part of this study. Low-flow-duration discharges for the following
streams were estimated for the 59-year base period (water years
1961-2019) using two record-augmentation techniques: right
branch ‘Opaeka‘a Stream, North Fork Wailua River, north and
south fork Waikoko Streams, ‘Ili‘ili‘ula Stream, north and south
fork Hanama‘ulu Streams, Kamo‘oloa Stream, Paohia Stream,
Ku‘ia Stream, Lawa‘i Stream, Wahiawa Stream, and Hanapgpe
River. The 95-percent flow-duration discharges (Q,,) ranged from
0.018 to 42 cubsic feet per second (ft/s). The 50-percent flow-
duration discharges (Q, ) ranged from 1.1 to 69 ft3/s. Upper-bound
estimates of low-flow duration discharges at partial-record sites
on south fork Hanama‘ulu, Hanama‘ulu tributary, ‘Oma‘o, and
Po‘ele‘ele Streams were estimated based on the highest discharges
measured as part of this study during Q%; to Q,, flow conditions,
which were 0.44, 0.40, 0.19, and 0.22 ft°/s, respectively. Measured
discharges on Nawiliwili, Pa‘ali, and left branch Wahiawa Streams
do not correlate with data at any active long-term continuous-
record stream-gaging stations (10 or more complete water years
of natural-flow record) and therefore low-flow duration discharges
could not be estimated.

This study also estimated streamflow gains and losses
using seepage-run discharge measurements in eight of the nine
study basins (Pii‘ali Stream basin was excluded). A majority
of the streams gained flow downstream from the uppermost
diversions. Measured seepage-gain rates ranged between 0.03 and
24.3 ft3/s per mile of stream reach. Seepage gains are presumed
to originate mainly from groundwater discharge in the Wailua
River, Hanama“ulu Stream, Nawiliwili Stream, Hul&‘ia Stream,
Lawa‘i Stream, Wahiawa Stream, and Hanapép@ River basins.
Under natural-flow conditions and flow conditions of the seepage
runs, a majority of the study-area streams flow continuously from
the mountains to the ocean. Where a stream discharges into a
reservoir—Hanama‘ulu and Wahiawa Streams—a dry reach may
occur immediately downstream from the reservoir to the point of
seepage gain in the stream.

Introduction

Hawai‘i’s surface water is a valuable resource that is
critical for economic, ecological, and cultural beneficial
uses. Traditionally, local communities depended on streams
for drinking water, growing crops such as taro, supporting
vegetation that provided materials for medicine and shelter, and
other cultural practices. Streams can support unique species
of endemic freshwater fauna, such as ‘o‘opu (freshwater fish),
‘Opae (freshwater mountain shrimp), and hthiwai (freshwater
snail). As the sugar industry became established in Hawai‘i,
large, engineered diversion and irrigation systems were built
to transport water across drainage basins, resulting in reduced
streamflow downstream of diversion intakes. As sugarcane
cultivation had ceased in many areas of the Hawaiian Islands in
the 1990s, some diversion systems were abandoned, whereas
others continued to divert water from streams for agricultural,
industrial, and municipal uses. Many diversion structures have
been constructed to capture a majority of the flow in the streams
during low-flow conditions, leaving some reaches downstream
from the diversion structures dry. Consequently, the diversion
of surface water during low-flow conditions greatly influences
water availability for ecosystems, aquatic biota, and other
beneficial uses.

Insufficient water supply to meet both offstream and instream
uses has been, and continues to be, a major issue in Hawai‘i.
Conflicts have led to costly litigation over rights to the water
between those currently diverting the water and those desiring
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sufficient flow in the stream for instream uses. On Kaua‘i,

interim instream-flow standards for Waimea River and several

of its tributaries, located adjacent to the study area (fig. 1), were
amended in April 2017 as a result of a mediation agreement
between Po‘ai Wai Ola (West Kaua‘i Watershed Alliance), Kehaha
Agriculture Association, Kaua‘i Island Utility Cooperative,

the Hawai‘i State Department of Hawaiian Home Lands, and
Agribusiness Development Corporation regarding the diversion of
water into the Koke‘e and Kekaha Irrigation Systems (fig. 1; State
of Hawai‘i, 2017b).

The State Water Code mandates that the State of Hawai‘i
Commission on Water Resource Management (CWRM) establish
a statewide instream-use protection program (State Water
Code, Hawai‘i Revised Statutes, chapter 174C, section 71).

The principal mechanism that CWRM implements for the
purpose of protecting instream uses is establishing instream-
flow standards that describe flows necessary to protect the

public interest in the stream with consideration of existing and
potential offstream water use, including the economic impact of
restricting such use (State Water Code, Hawai‘i Revised Statutes,
chapter 174C, section 71[1][C]). The instream uses recognized
by CWRM include (1) maintenance of fish and wildlife

habitat; (2) outdoor recreational activities; (3) maintenance of
ecosystems; (4) aesthetic values, such as waterfalls and scenic
waterways; (5) maintenance of water quality; (6) the conveyance
of irrigation and domestic water supplies; and (7) the protection
of traditional and customary Hawaiian rights.

Recognizing the complexity of establishing permanent
instream-flow standards for all perennial streams in Hawai‘i, the
CWRM originally established interim instream-flow standards at
status quo levels in 1988-89. An interim instream-flow standard
is originally defined as the amount of water flowing in each
stream, considering the natural variability of streamflow, without
further amounts of water being diverted offstream through new or
expanded diversions existing at the time the administrative rules
were adopted in 1988 and 1989 (Hawai‘i Administrative Rules,
chapter 169, section 13-169-48). The CWRM first adopted interim
instream-flow standards for all streams in southeast Kaua‘i on
June 15, 1988 (Hawai‘i Administrative Rules, chapter 169, section
13-169-45). These interim instream-flow standards did not have
quantitative flow values and allowed diversions existing at the
time of the adoption to continue operating. Additional information
could be filed with CWRM to reduce or increase diversion, through
a modification of the interim instream-flow standards. Upon
reviewing a CWRM decision related to interim instream-flow
standards for streams in eastern O‘ahu, the Hawai‘i Supreme Court
deemed “status quo” interim instream-flow standards inadequate
and required quantitative interim instream-flow standards to be
established (State of Hawai‘i, 2000). Within the last two decades,
the CWRM has compiled the best available information—
hydrology, and instream and offstream uses—on streams of
concern to develop quantitative interim instream-flow standards
upon receipt of a petition to amend an existing interim instream-
flow standard. Quantitative interim instream-flow standards that
account for economic, domestic, cultural, ecological, recreational,
and aesthetic needs have not yet been established for streams in
southeast Kaua‘i, Hawai‘i.

Previous Low-Flow Investigations

Previous low-flow studies of Hawaiian streams have
been largely conducted on a basin-scale basis, with a focus on
computing a selected range of low-flow duration discharges
and examining the effects of surface-water diversions on low
flows and habitat availability for native stream fauna. Few
studies were conducted to characterize low-flow availability
in streams on Kaua‘i. Cheng and Wolff (2012) characterized
availability and distribution of low flow in Anahola Stream and
assessed flow availability for agricultural use under a variety
of potential interim instream-flow standards established for the
stream. In an effort to understand the occurrence and movement
of groundwater in the Lthu‘e basin, Izuka and Gingerich (1998)
conducted base-flow analysis of continuous stream-gaging
station records and collected additional discrete streamflow
measurements to quantify the magnitude of gains and losses in
the measured stream reaches. These streamflow measurements
are summarized in this report. Statewide analysis of low flows
includes studies by Yamanaga (1972), Fontaine and others
(1992), Bassiouni and Oki (2013), Cheng (2016), and Clilverd
and others (2019). The application of record-augmentation
methods for estimating low-flow characteristics at sites with
either short-term records or partial-records of streamflow data
is well documented in many of the aforementioned studies.

Purpose and Scope

This report presents the results of a study conducted
during 201620 (study period) by the U.S. Geological Survey
(USGS), in cooperation with CWRM, to provide information
that could be used by CWRM to develop technically sound
instream-flow standards for streams in southeast Kaua‘i. The
objectives of the study were to quantify natural low-flow
characteristics upstream of surface-water diversions and
characterize the seepage gains and losses on selected reaches
of a subset of streams in the study area. For the purposes of
this report, low-flow characteristics are represented by flow-
duration discharges equal to and less than the median flow.
The nine main study-area basins, from north to south, include
Wailua River, Hanama‘ulu, Nawiliwili, Pu‘ali, Hulé‘ia,
Waikomo, Lawa‘i, and Wahiawa Streams, and Hanapépé
River. The scope of this investigation involved analyzing
historical and current (study period) streamflow data at
continuous-record stream-gaging stations and miscellaneous
sites and the collection of additional data, including (1)
streamflow records at continuous-record low-flow stations
established on Waiahi and Lawa‘i Streams; (2) discharge
measurements at 18 partial-record sites established upstream
from all surface-water diversions; and (3) seepage-run
discharge measurements at selected sites in the study-area
basins. This report includes descriptions of study-area streams
that flow from the mountains to the ocean during low-flow
conditions, estimates of selected flow-duration discharges (95
to 50 percent exceedance values) on 13 streams, and estimates
of seepage gains and losses on selected reaches of 11 streams.



Description of the Study Area

The study area is situated on the island of Kaua‘i, the fourth
largest (553 square miles [mi2]) and one of the geologically oldest
of the eight main Hawaiian Islands (Stearns and Macdonald,
1942). The topography of the island ranges from coastal beaches
and the 2,700-foot (ft) sea cliffs of the Napali Coast in the
northwest to the highest altitude of 5,243 ft above mean sea
level at Kawaikini Peak, a mile south of Wai‘ale‘ale (fig. 1).

The population on the island is more than 72,000, which is 5
percent of the State’s 2018 population estimate (State of Hawai‘i,
2018), with Lihu‘e as the main population center. The study

area includes nine stream basins—from Wailua in the north

to Hanap@pe€ in the south—that drain the southeastern part of

the island. The streams in the study area consist of the North
Fork Wailua River; South Fork Wailua River and its tributaries
Waikoko, ‘Ili‘ili‘ula, and Waiahi Streams; Hanama“ulu Stream;
Nawiliwili Stream; Pu‘ali Stream; Hulé‘ia Stream and its
tributaries Kamo*‘oloa, Paohia, and Ku‘ia Streams; Waikomo
Stream and its tributaries ‘Oma‘o and Po°ele‘ele Streams; Lawa‘i
Stream; Wahiawa Stream; and Hanap@p€ River. Drainage areas
delineated by the study-area streams range from 1.5 to 52.5 mi2,
with Pa‘ali being the smallest and Wailua the largest. Low-flow
characteristics of the study-area streams are mainly affected by
(1) climate and rainfall; (2) the physical attributes of the valleys
such as topography, land cover, land use, and hydrogeology; and
(3) regulation and withdrawal of streamflow.

Climate and Rainfall

The topography of Kaua‘i and the position of the North
Pacific subtropical anticyclone relative to the island produce a
climate characterized by mild and uniform temperatures, cool and
persistent trade winds, and seasonal and geographic variability
in rainfall (Blumenstock and Price, 1967; Schroeder, 1993).
Rainfall is generated from the rising and cooling of moisture-
laden trade winds along the windward slopes of the island. During
the dry season (May—September), persistent northeasterly trade
winds blow 80-95 percent of the time. During the rainy season
(October—April), other migratory weather systems that affect the
island reduce trade-wind frequency to 50-80 percent of the time.
Heavy and intense rainfall can be caused by low-pressure systems
from the northwest and those accompanied with southerly winds
(Kona storms), cold fronts associated with mid-latitude cyclones,
and tropical cyclones from the eastern Pacific Ocean (Giambelluca
and Schroeder, 1998). Dry coastal areas receive most of their
annual rainfall amounts from these storms.

Orographic rainfall on the island is characterized by steep
spatial gradients with increasing altitude (fig. 2). Mean annual
rainfall within the study area ranges from about 400 inches (in.)
at Wai‘ale‘ale to less than 25 in. in the coastal areas (Giambelluca
and others, 2013). Within 1 mi of Wai‘ale‘ale, mean annual
rainfall can vary spatially by more than 150 in. During the study
period, annual rainfall varied from 299 in. in water year 2017 to
530 in. in water year 2018 (fig. 3)—about 24 percent below and
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35 percent above the mean annual rainfall for water years 1961—
2019, respectively—at rain-gaging station 220427159300201

on Wai‘ale‘ale (station 1047.0 in fig. 2). For water years 2016,
2017, and 2019, the month of June was consistently one of the
wettest months during the study period. In water year 2018, the
month of August had the highest rainfall total of 76 in. out of all
months in the water year, which is more than double the mean
monthly rainfall total of 32 in. for water years 1961-2019. About
34 in. of rain from the August 2018 rainfall total recorded at the
Wai‘ale‘ale rain-gaging station was generated from Hurricane
Lane. A water year is a 12-month period that extends from
October 1 to September 30 of the following year and is named
according to the year during which the period ends. For example,
the “2019 water year” is the period from October 1, 2018, to
September 30, 2019.

The basin of Wailua River receives the highest maximum
rainfall of about 400 in. per year in the study area. Hanap&pe
River basin receives a maximum rainfall of about 250 in. per year.
The basins of Hulé‘ia and Wahiawa Streams receive a maximum
rainfall of about 200 in. per year. The basins of Waikomo and
Pu‘ali Streams receive the lowest maximum rainfall in the study
area of less than 120 in. per year.

Bassiouni and Oki (2013) analyzed trends in streamflow and
base flow for long-term continuous-record stations in Hawai‘i.
Downward trends in base flow and low-streamflow characteristics
occurred during the 1943—-2008 period. The detected trends may
be related to regionwide changes in climatic and land-cover
factors. Statistically significant (5-percent significance level)
downward trends in low flows were detected on east branch of
North Fork Wailua River during 1943-2008.

Hydrogeology

Hydrogeology, as it relates to the composition and
permeability of the aquifer and the position of the water table
relative to the streambed, is an important physical characteristic
affecting low flows because the natural low flow in a stream
is mainly from groundwater sources. Groundwater in the
study area occurs in three principal hydrogeologic settings
(fig. 4): (1) dike-impounded-groundwater setting, (2) thickly
saturated setting, and (3) freshwater-lens setting (Izuka and
others, 2018). The following discussion summarizes the three
principal hydrogeologic settings and where these settings occur
relative to aquifer systems in the study area. Aquifer systems are
hydrologic units established by the CWRM to provide a basis
for managing groundwater resources and the aquifer systems
may not reflect hydrogeologic conditions.

Dike-impounded-groundwater settings occur where
low-permeability dikes intrude lava flows and other rocks
to form compartments in which groundwater can be
impounded to hundreds or thousands of feet above sea level.
Water flows from compartments with higher water levels
to compartments with lower water levels, and eventually to
adjacent groundwater bodies—such as freshwater lenses—or
discharges to springs, streams, and submarine seeps. Dike-
impounded groundwater maintains perennial flow in streams
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Annual rainfall, in inches

6 Low-Flow Characteristics of Streams from Wailua to Hanapépé, Kaua'i, Hawai‘i
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EXPLANATION
Mean annual rainfall for water years 1961-2019—Water years
1961-97 from Giambelluca and others (2013); water years
1998-2019 from U.S. Geological Survey (2020a)

393

Study A
period

Water year

Figure 3. Plot of annual rainfall totals at rain-gaging station 220427159300201 (State key number 1047.0) on Wai‘ale‘ale near Lihu‘e, Kaua'i,
Hawai'i, for water years 1961-97 (Giambelluca and others, 2013) and water years 1998-2019 (U.S. Geological Survey, 2020a).

in some parts of the Wailua, Hulg ia, Lawa‘i, Wahiawa, and
Hanapgpg aquifer systems.

Thickly saturated settings occur in low-permeability lava
flows situated in an area with wet climate, where groundwater
saturates nearly to the land surface and may discharge to the
streams rather than as submarine groundwater discharge. This
groundwater flow maintains perennial flow in most reaches
of North Fork and South Fork Wailua Rivers and Hulé‘ia
Stream, and the entirety of Hanama‘ulu, Nawiliwili, and Pa‘ali
Streams. Stream reaches in dike-impounded-groundwater and
thickly saturated settings generally are referred to as “gaining
reaches” because groundwater contributes to streamflow.

Freshwater-lens settings are high-permeability aquifers that
occur in dike-free lava flows where fresh groundwater forms a
lens-shaped body that buoyantly overlies denser saltwater from
the ocean. The lens has a low-altitude water table and groundwater
flows toward the coast where it naturally discharges to springs,
streams, wetlands, and submarine seeps. A freshwater-lens setting
is postulated to occur in the southern part of Koloa and Hanapépé
aquifer systems, which underlays most of Waikomo Stream
and the lower reaches of Lawa‘i Stream, Wahiawa Stream, and
Hanapgépg River. Stream reaches in the freshwater-lens setting
generally are referred to as “losing reaches” because streamflow
discharges to the groundwater body. According to Izuka and others
(2018), the boundary between dike-impounded-groundwater and

freshwater-lens settings in southern Kaua‘i is uncertain owing to
insufficient water-level data.

Surface-Water Use

Historically, plains in the low-lying lands in the study
area were used mainly for sugarcane cultivation. Established
in 1835, Koloa Plantation was the first sugar plantation in
Hawai‘i (Wilcox, 1996). Situated in the Maha“‘ulept area and
Waikomo Stream basin (fig. 5), the plantation depended on
water from neighboring lands owing to the lack of surface-
water and groundwater resources in the area. The diversion,
conveyance, and storage systems owned and managed
by Koloa Plantation include the 2.3-million gallon Waita
Reservoir, the second largest reservoir in Hawai‘i. Koloa
Plantation was acquired by Grove Farm in 1948. Grove Farm
originally owned lands and operated diversion systems in
the Hulé‘ia Stream basin. After ending its sugar business
in 1974, Grove Farm leased lands to Lthu‘e Plantation and
McBryde Sugar Company for continued sugar production.
Lihu‘e Plantation, established in 1849, was the second-oldest
sugar plantation in Hawai‘i. The plantation originally owned
lands and operated diversion systems in the Wailua River
and Hanama‘ulu Stream basins. The diversion systems span
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8 Low-Flow Characteristics of Streams from Wailua to Hanapépé, Kaua‘i, Hawai'i

51 mi of ditches with 18 stream intakes and transported an
average 100—140 million gallons of water per day. Within

the Lihu‘e Plantation lands, the East Kaua‘i Water Company
used water from North Fork Wailua River. Lihu‘e Plantation
ended sugar production in November 2000 (Sommer, 2000).
McBryde Sugar Company originally owned lands and
operated diversion systems in the Lawa‘i Stream, Kalaheo
Gulch, Wahiawa Stream, and (lower) Hanap&pé€ River basins.
With limited access to surface-water resources, the company
focused on developing groundwater resources and water
storage. Groundwater pumps were powered by the company’s
two hydropower facilities, one located on the northern slopes
of Kaua‘i and the second in Kalaheo Gulch basin. McBryde
Sugar Company built Alexander Reservoir (capacity of more
than 800 million gallons) to capture water sources at the head
of Wahiawa Stream basin (fig. 5). McBryde Sugar Company
ended sugar production in 1994.

As a result of sugar plantation closures, water use shifted
from irrigation of sugarcane to irrigation of diversified crops
and hydropower development. During the study period, many
of the surface-water diversions originally operated by the
plantations continued to be used (fig. 5). The upper reaches
of Wailua River, Hanama‘ulu Stream, and Hulé‘ia River
were diverted by several interconnected ditches that supply
irrigation water for seed production, commercial forestry,
pasture management, and diversified crops. Water diverted
from Waiahi Stream, a tributary of South Fork Wailua River,
supported two hydropower facilities in the valley. Nawiliwili
Stream provided irrigation water for taro cultivation and
diversified crops within the valley. Lawa‘i and Wahiawa
Streams supplied irrigation water for coffee cultivated near
the south shore and landscape irrigation. The upper tributaries
of Hanapé€pe River provided irrigation water mainly for seed
production and pasture management in the western coastal
areas (State of Hawai‘i, 2016, p. 50). Hanap&pé River was also
diverted in the lower reach to irrigate taro farms in the valley
and coffee fields in lower Kalaheo Gulch basin. Information
on surface-water diversions is gathered from County of Kaua‘i
and State of Hawai‘i reports, accounts from current landowners
within the study area, and visual observations during field
investigations by USGS personnel. The conditions related to
the diversion and uses of surface water in the study area apply
to the study period and may not represent future conditions
because landownership and the uses of water may change.

Historical Surface-Water Availability

Streamflow data that describe the natural (unregulated)
low-flow conditions of the study-area streams are limited. Natural

flow is streamflow that is not affected by factors including
surface-water diversions, irrigation return flows, or groundwater
withdrawals. Two inactive continuous-record stream-gaging
stations—station 16053000 on Kamo‘oloa Stream and 16054000
on Ku‘ia Stream (fig. 1)—monitored natural flow from November
1939 to June 1941. The median discharge is the flow that has been
equaled or exceeded 50 percent of the time during a specified
period. Median discharges for the period of record at the stations
are 4.0 cubic feet per second (ft3/s) on Kamo*oloa Stream and

1.7 ft3/s on Kuia Stream (table 1). With less than 2 years of
available data, the duration discharges may not be representative
of long-term conditions.

Data that describe historical diverted conditions may not
apply to the present day; however, they provide information that
is useful for understanding the diversion practices that occurred
during the study period. In addition, ditch-flow data at surface-
water diversion intakes and associated flow-duration discharges
can provide some information on streamflow availability because
many diversion intakes were constructed to capture a majority of
the streamflow during low-flow conditions. Multiple surface-water
diversions have existed on the same stream to capture streamflow
gained between the diversions.

A number of ditch-flow gaging stations operated at or
near surface-water diversions within the study area prior to
2001 (table 1, fig. 5). A majority of ditch-flow gaging stations
were located in the Wailua River and Hulé‘ia Stream basins.
On North Fork Wailua River, station 16100000 monitored flow
diverted from a stream on the island’s northern slopes that was
discharged to a tributary of North Fork Wailua River. Station
16061000 monitored flow diverted from the river to ‘Ili‘ili‘ula
North Wailua Ditch and downstream station 16062000
monitored flow diverted to Stable Storm Ditch. On South
Fork Wailua River, station 16061200 monitored total diverted
flow from North Fork Wailua River and Waikoko Stream in
the ‘Ili‘ili‘ula North Wailua Ditch. The difference in ditch-
flow records at stations 16061000 and 16061200 represents
diverted flow from Waikoko Stream assuming no gain or
loss of ditch flow between the stations. Station 16057000
monitored flow diverted from Waiahi Stream, a tributary of
South Fork Wailua River, to Upper Lihu‘e Ditch. Downstream
station 16058000 monitored flow diverted from South Fork
Wailua River to Hanama“‘ulu Ditch. In Hulé‘ia Stream basin,
station 16056800 monitored flow diverted from two tributaries
of South Fork Wailua River and two tributaries of Hulg ia
Stream to the Waiahi-Ku‘ia Aqueduct. Stations 16053400 and
16053600 monitored flow diverted from two tributaries of
Hulg‘ia Stream to upper and lower Ha‘ikii Ditch, respectively.
Station 16054200 monitored flow diverted from tributaries of
Hulg‘ia Stream to Kdloa Ditch and eventually conveyed to the
Maha‘ulepii area.
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Methods

The following sections provide an overview of data-
collection sites established, flow-duration statistics and how
they are computed, and the record-augmentation techniques
used in this study.

Data-Collection Sites

Three types of streamflow-measurement sites are described
in this report: (1) a continuous-record stream-gaging station,
which provides a continuous record of discharge at a location
in the stream; (2) a partial-record station, which commonly has
10 or more systematic streamflow measurements at a location
in the stream; and (3) a miscellaneous site, which typically has
less than 10 streamflow measurements that may not have been
collected in a systematic manner as with a partial-record station.
In this study, a long-term continuous-record stream-gaging
station (long-term station) has 10 or more complete water years
of natural-flow record, and a short-term continuous-record
station (short-term station) has less than 10 complete water
years of natural-flow record. A low-flow partial-record site
has a series of streamflow measurements that have been made
under low-flow conditions. An example of a miscellaneous
site is a seepage-run measurement site where only one or two
measurements have been made for the purposes of determining
seepage gains and loses along a stream reach.

The following sections describe short-term continuous-
record stream-gaging stations, partial-record sites, and seepage-run
discharge-measurement sites established for this study.

Short-Term Stations

Two short-term continuous-record stream-gaging stations
that monitored natural low flow were established to serve
as potential index stations (table 2). Station 16057900 was
located on Waiahi Stream upstream from the Waiahi upper
powerhouse. Station 16052400 was located on right branch
Lawa‘i Stream upstream from the Lawa‘i Intake Ditch and a
diversion intake for a nursery in the area (fig. 1). During the
study period, two long-term stations were operated within the
northernmost boundary of the study area in the Wailua River
basin (fig. 1). The short-term stations were established for this
study because of a lack of long-term stations in the southern
part of the study area. Information from these short-term
stations was needed to estimate streamflow characteristics at
partial-record sites in the southern part of the study area where
discharges may not correlate well with discharges at existing
long-term stations in the northern part of the study area.

Each short-term station recorded instantaneous stage
values in 15-minute intervals with no real-time capability. A
stage-discharge relation (rating curve) was developed from
paired discharge and stage measurements at the short-term
stations for the range of flow-duration discharges—between
Q,, and Q. —that are of interest in this study. Using this
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relation, discharge at the station is determined from a stage
measurement.

The Waiahi short-term station has been in operation
since November 2015. The Lawa‘i short-term station was in
operation from February 2016 to March 2017, and May 2017
to March 2018. In March 2017, the station equipment was
damaged by a high-flow event and it was repaired in May
2017. Subsequently in March 2018, the station was destroyed
by a high-flow event that altered the stream channel near the
station. Reinstallation of the station was deemed unfeasible
owing to the instability of the stream channel at the time.

Station 16049000 on Hanapépe River is an active
continuous-record stream-gaging station that monitors flow
regulated by upstream surface-water diversions on right and
left branch Ko‘ula Rivers. During calendar year 2017, these
upstream diversions were not in operation (Howard Greene,
Gay & Robinson, oral commun., 2018). Continuous record
during this period that the station monitored natural flow
was used in record augmentation to estimate flow-duration
discharges at the station. For simplicity, station 16049000 is
referred as a short-term station in this report because the station
has less than 10 complete water years of natural-flow record.

Partial-Record Sites

Partial-record sites were established on 3 main streams and
15 tributary streams in the study area (fig. 1). To characterize
natural low-flow availability of these streams, partial-record sites
were established upstream from all surface-water diversions.
Discharges measured at the partial-record sites may include
discharge from upstream development tunnels because flow from
a development tunnel is considered water that would otherwise
have naturally discharged into the stream.

For record augmentation, about 10 discharge measurements
are generally made at a partial-record site during periods of low
flow (Rantz and others, 1982). The discharge measurements
should be made under a variety of low-flow conditions and during
independent recessions. A streamflow recession is defined as
the period when flow returns to low-flow conditions following a
period of direct runoff. Hydrographs from nearby active long-term
stations were checked to determine when recessions occurred in
the study-area streams. For this study, discharge measurements
were made at each of the partial-record sites between February
2016 and January 2020, and bracketed the range of flow-duration
discharges—between Q,, and Q,—as indicated by nearby active
continuous-record stream-gaging stations that monitored natural
flow. This approach was used to increase the accuracy of the entire
range of estimated flow-duration discharges at the partial-record
sites. Discharge measurements were made with acoustic Doppler
velocimeters (ADV), processed, reviewed, approved, archived,
and available in the USGS National Water Information System
database at https://waterdata.usgs.gov/hi/nwis/nwis.

Most discharge measurements at the partial-record sites
were made during stable-flow conditions, as documented by
recording the height of water surface—commonly referred to
as gage height or stage—during the time when the discharge
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14 Low-Flow Characteristics of Streams from Wailua to Hanapépé, Kaua‘i, Hawai'i

measurements were being made. Discharge measurements that
were made when the stage was highly variable, that is, when
stream stage changed by more than £0.02 ft, were not used to
estimate streamflow characteristics.

Seepage-Run Discharge-Measurement Sites

The spatial distribution of streamflow gains and losses
along stream reaches in study-area streams was characterized
by seepage-run measurements. A seepage run consists of
several streamflow measurements collected on the same day
at specific sites along a stream under stable-flow conditions to
determine the magnitude of streamflow gains and losses, and
to identify flowing and dry stream reaches. Stream reaches can
either gain water (groundwater discharge into stream) or lose
water (stream discharge into a groundwater body), depending
on the altitude of the water table relative to the streambed.
Seepage-run measurements combined with low-flow duration-
discharge estimates can provide water-availability information
for downstream reaches and help determine whether the
stream flows continuously from the mountains to the ocean
(commonly referred to in Hawai‘i as mauka to makai flows).

Seepage runs were conducted in eight of the nine study
basins (Pt‘ali Stream basin was excluded) as part of this study
and targeted flow conditions different from those of previous
seepage runs. For example, if a previous seepage run was
conducted under conditions when an index station was flowing
at about a Q,, discharge, the seepage run conducted as part of
this study would target lower-flow conditions as indicated by
the same index station. This was done to characterize seepage
gains and losses over a range of flow conditions.

Flow-Duration Statistics

Natural low-flow characteristics of the study-area streams
are described using flow-duration discharges. Flow-duration
curves display the complete range of flows in a stream and have
been extensively used for hydrologic planning and design (Vogel
and Fennessey, 1995), especially in the field of water-resource
management. A flow-duration curve is a cumulative-frequency
distribution that shows the percentage of time that specified
discharges at a location in a stream are equaled or exceeded during
a specified period; hence, the curve shows the relation between
magnitude and frequency of streamflow.

Daily mean discharges are typically used to construct
the flow-duration curves because they allow for more detailed
examination of the duration characteristics of a stream (Smakhtin,
2001, p. 154) compared to flow-duration curves constructed from
weekly, monthly, or annual streamflow data. A flow-duration
curve is constructed by first ranking the daily mean discharges for
a given period of record in descending order, then computing the
exceedance probability of each discharge, and finally plotting the
discharges against their exceedance probabilities (Ries and Friesz,
2000, p. 8). The exceedance probabilities are computed with the
Weibull formula (Loaiciga, 1989, p. 82):

k
P=—/ k=12,3,.., 1
S| " 1

where P is the exceedance probability of a daily mean
discharge with rank £;
is the rank of a daily mean discharge; and
n is the total number of daily mean discharges
for the given period of record.

The 50-percent flow-duration discharge, commonly
referred to as median (Q,,) discharge, is one of the most
representative and frequently computed flow-duration
statistics. The Q. discharge is the flow that has been equaled
or exceeded 50 percent of the time during a specified period.
Flow-duration discharges that describe low-flow conditions
are generally considered to be those equal to or less than the
Q,, discharge, and they are represented by the lower end of the
flow-duration curve. The natural low-flow characteristics of
this study are represented by flow-duration discharges between
the Q. and Q,, discharges in 5-percent increments—Q,, Q,,,

QSS’ QSO’ Q75’ Q70’ QGS’ QGO’ Q55’ and QSO'

Record Augmentation

Record augmentation is used to determine selected low-flow
duration discharges for short-term and partial-record stations
for a base period that is representative of long-term hydrologic
conditions in the study area. It is an index-streamgage approach in
which streamflow information from a continuously gaged basin is
applied to a basin with limited streamflow data (Eng and others,
2011). This method involves correlating concurrent streamflow
data points between the measurement site of interest (short-
term stations and partial-record sites) and a nearby long-term
station (index station) to develop a statistical relation. About 10
concurrent streamflow data points are generally needed to apply
record augmentation (USGS Office of Surface Water, Technical
Memorandum no. 86.02, December 16, 1985). The model built
from the correlation between the data points is used to compute
flow-duration discharges at the measurement site of interest from
corresponding flow-duration discharges at the index station for the
base period. The base period is a common period during which all
index stations used in the analysis are in operation with complete
water years of streamflow data for computing various flow-
duration discharges.

The Maintenance of Variance Extension Type 1 (MOVE.1)
record-augmentation technique described by Hirsch (1982) and
the graphical-correlation technique described by Searcy (1959,

p- 14) are used to extend streamflow records for this study. Both
record-augmentation techniques assume that the relation between
concurrent records at the index stations and measurement site of
interest is the same during the selected base period (Ries, 1993,
p. 21). Selecting the appropriate record-augmentation technique
for estimating streamflow characteristics depends on the relation
between data points at the measurement site of interest and the
concurrent data points at the index station. The initial procedures
used prior to the application of record-augmentation techniques
are as follows:



1. Compute the 95-, 90-, 85-, 80-, 75-, 70-, 65-, 60-, 55-, and
50-percent flow-duration discharges for the base period at
selected index stations (table 2).

2. Plot the base-10 logarithms of data points at the
measurement sites (short-term stations and partial-record
sites) and concurrent data points at each selected index
station to determine which index station provides the
best statistical relation by comparing the correlation
coefficients. Index stations with correlation coefficients
greater than 0.80 are examined.

3. Assess for curvature in the plots developed in step 2.
When little or no curvature is detected in a relation on a
logarithmic plot, the MOVE.] technique is used to estimate
flow-duration discharges. When curvature is evident in the
relation, the graphical-correlation technique is used.

MOVE.1 Technique

The statistical relation developed with the MOVE.1
technique is based on the line of organic correlation regression
method. Hirsch and Gilroy (1984) and Helsel and Hirsch (2002)
showed that the line of organic correlation method was most
appropriate for record augmentation of hydrologic data compared
with ordinary least squares and least normal squares regression
methods. The general procedure for the MOVE.1 technique
begins with the transformation of concurrent data points at the
index station and measurement site to base-10 logarithms, and
then computation of the means and standard deviations of the
transformed values. The low-flow duration discharges for the base
period at the index station are also computed and transformed to
base-10 logarithms. Estimates of low-flow duration discharges at
the measurement site are determined using the MOVE.1 formula
(eq. 2) and then converted to the original (nontransformed) units of
measurement in ft3/s.

N
)/i = my +_y(Xz _mx) (2)

X

where

2~

is the base-10 logarithm of the estimated
low-flow duration discharge at the partial-
record site;

X is the base-10 logarithm of the computed
low-flow duration discharge at the index
station;

m is the mean of the base-10 logarithms of the
discharge measurements at the partial-
record site;

m is the mean of the base-10 logarithms of the
concurrent daily mean discharges at the
index station;

s is the standard deviation of the base-10
logarithms of the discharge measurements
at the partial-record site; and

s is the standard deviation of the base-10

logarithms of the concurrent daily mean

discharges at the index station.
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Granato (2009) developed the Streamflow Record Extension
Facilitator program to automate the MOVE.1 technique; this
program is used in this study to facilitate record augmentation.
The MOVE.1 results are evaluated by analyzing several regression
statistics computed by the program. Those statistics include the
correlation coefficient (r), residual error for each data point (e),
the leverage of each data point (%), the mean square error (MSE),
the root mean square error (RMSE), and a modified Nash-Sutcliff
coefficient of efficiency (E). The correlation coefficient (Vogel and
Stedinger, 1985; Helsel and Hirsch, 2002) measures the strength
of the linear relation between concurrent discharges at the index
station and measurement site. The residual error is the uncertainty
in the estimated flow-duration discharges at the measurement
sites. The leverage of a data point reflects the influence it has on
the statistical relation. A high leverage likely indicates an outlier
in the discharges at the measurement sites and the statistical
relation would be skewed towards this data point. The RMSE
(or standard deviation) is the square root of the variance, and
it aggregates the differences (or residuals) between individual
estimated and measured discharges at the measurement sites into a
single predictive measure. The modified Nash-Sutcliff coefficient
of efficiency (Legates and McCabe, 1999), with values ranging
from negative infinity to 1, determines the accuracy to which the
statistical relation predicts low-flow duration discharges at the
measurement sites from the low-flow duration discharges at the
index station. A coefficient of efficiency of zero indicates that
the mean of discharges at the measurement site is as accurate
for predicting flow-duration discharges as the regression model.

A negative coefficient of efficiency occurs when the mean of
discharges at the measurement site is a better predictor than the
regression model. For this study, acceptable values of correlation
coefficients (r) and modified Nash-Sutcliff coefficients of
efficiency (E) are those equal to or greater than 0.80 and 0.50,
respectively. The equations used to compute these regression
statistics can be found in Granato (2009).

Graphical-Correlation Technique

In the graphical-correlation record-augmentation technique,
a curve of relation is plotted through the data points at the
measurement site and concurrent data points at the index station.
The data points are plotted on an arithmetic scale when drawing
the curve of relation to reduce curvature in the extreme low flows
and to avoid long downward extrapolations of the data (Ries,
1993, p. 21). The selected low-flow duration discharges at the
measurement site are determined by reading the discharges of the
measurement site from the best fit curve of relation that correspond
to the low-flow duration discharges at the index station.

Index Stations and Selection of Base Period

An index station is a continuous-record stream-gaging station
that measures natural flow and has a sufficient length of record for
estimating streamflow characteristics representative of long-term
conditions. It is usually located along the same stream as the site of
interest at which flow-duration discharge estimates are needed or
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in a nearby stream basin that is hydrologically similar to that of the
site of interest. Searcy (1959, p. 14) defines hydrologic similarity
between two drainage basins as having the same probability of
rainfall, not necessarily the occurrence of concurrent rainfall.
Proximity is a common criterion for selecting index stations,
although remote index stations as far away as 50 miles have

been used to estimate streamflow characteristics (Searcy, 1959,

p. 14). In a study by Cheng (2014) that characterized low-flow
availability for streams in west Maui, data at one partial-record site
correlated with an index station on Moloka‘i about 20 mi away.

Six active long-term continuous-record stream-gaging
stations on Kaua‘i that monitored natural flow were considered
potential index stations as a result of the limited number
of long-term stations in the study area (table 2). Stations
16068000 on east branch of North Fork Wailua River and
16071500 on left branch ‘Opaeka‘a Stream are the only long-
term stations in the study area, and both stations are located in
the North Fork Wailua River basin (fig. 1).

Selection of a base period for adjusting streamflow
records is critical to obtaining comparable low-flow estimates
among the measurement sites. Flow-duration discharges may
vary when computed from different time periods because the
distribution of streamflow is not constant with time (Ries,
1993, p. 18). When flow-duration discharges are estimated
from multiple index stations with different time periods and
(or) record lengths, the time-sampling errors are generally
larger than those computed with similar record periods.
Therefore, streamflow records at index stations are commonly
limited to a common base period to minimize time-sampling
errors and to ensure that differences in flow characteristics
are associated with spatial differences in climate and drainage
basin characteristics (Searcy, 1959, p. 12).

The base period should also be of sufficient length
that is representative of long-term streamflow conditions.
Fontaine (1995) used data from five long-term stations on the
island of O‘ahu, each with more than 60 years of record, and
demonstrated that estimates of streamflow characteristics are
improved with increased record length (see fig. 2 and table 9
in Fontaine, 1995). A minimum of 10 years of record generally
is used to estimate streamflow characteristics such as the
long-term median discharge. If the length of record is deemed
inadequate for representing long-term streamflow conditions,
record-augmentation techniques are commonly used to adjust
the short-term record to a longer period (Ries, 1993, p. 18).
The 59-year period 1961-2019 is selected as the base period
for this study because (1) this period is representative of recent
hydrologic conditions, (2) this period is of sufficient length to
represent long-term hydrologic conditions, and (3) the greatest
number of long-term stations are operated within this 59-year
period.

At the six active long-term stations that monitored
natural flow, selected annual statistics—Q,,, Q,,, and Q,,
discharges and mean flow—computed for each water year
from daily mean values of total flow (U.S. Geological Survey,
2020b) and base flow were evaluated for trends in the base
period. Trend analyses at the stations were conducted using

methods described in Bassiouni and Oki (2013). The base-
flow component of total flow was estimated from daily mean
values of streamflow using a base-flow separation method
described in Wahl and Wahl (1995). This method previously
has been used for streams on Moloka‘i, Kaua‘i, Maui, and
Oahu to estimate base flow (Oki, 1997; Izuka and Gingerich,
1998; Gingerich, 1999; Fontaine, 2003; Engott and others,
2017; Johnson and others, 2018; Izuka and others, 2018;
Oki and others, 2020) and provides a reasonable estimate of
base flow for perennial streams in Hawai‘i. The base-flow
separation method defines local minimums within consecutive,
nonoverlapping N-day periods and requires two parameters:
/, the turning-point test factor, and N, the number of days in
a test window. In this study, the f'and N values used for the
stations were 0.9 and 5 days, respectively, as determined
using the method described in Wahl and Wahl (1995). Annual
statistics from each station were normalized by dividing each
annual statistic by the corresponding statistic calculated over
the entire base period. For example, the record of annual
mean flows during the base period for a station is normalized
by dividing each annual mean flow by the overall mean
flow during the base period. Trends were tested using the
nonparametric Mann-Kendall test (Hirsch and Slack, 1984)
at a significance level of 5 percent. Kendall’s tau coefficient,
which ranges from -1 to +1, measures the strength of the
correlation between flow and time. A tau value of -1 indicates
that all flows decrease with increasing time; a tau value of +1
indicates that all flows increase with increasing time. Sen’s
slope was used to assess the magnitude of the overall change
associated with each significant trend at the 5-percent level of
significance. Sen’s slope is most accurate for evenly spaced
data, which was generally the case for data at the active long-
term stations in this study.

Trends in annual total-flow and base-flow statistics at
all the stations were downward except for the trend in Q,,
discharges at station 16068000 (table 3). At all six stations,
trends in mean base flow were statistically significant at
the 5-percent level of significance. Statistically significant
downward trends of the annual total-flow and base-flow
statistics were detected using data from stations 16019000
and 16108000. For station 16068000, the only statistically
significant downward trend for the flow characteristics
tested is associated with mean base flow. Downward trends
in streamflow are consistent with an earlier assessment
(Bassiouni and Oki, 2013) that indicated decreases in rainfall.
Long-term downward trends in base flows of streams may
indicate a reduction in water availability for offstream and
instream uses. Whether the downward trends in total flow and
base flow of streams will continue in the future is unknown
owing to uncertainties associated with potential climate
change and watershed response to the changes. Therefore,
low-flow duration discharges estimated at measurement
sites established as part of this study need to be re-evaluated
periodically to ensure that they are representative of flow
conditions during which interim instream-flow standards are
being established.
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Results of the Mann-Kendall test for trends in annual flows from 1961 to 2019 at six active long-term stations monitoring natural flow,

[Bold red type indicates statistically significant negative trend (5-percent level) using the standard Mann-Kendall test; Sen’s slope, in cubic feet per second per
year; p-value, 2-sided significance level attained by the data; USGS, U.S. Geological Survey; Qxx, discharge in cubic feet per second for selected xx percentages

of time (90, 70, 50 percent) the indicated discharge was equaled or exceeded]

Total streamflow Base flow
Annual statistic
Tau Sen’s slope P-value Tau Sen’s slope P-value
USGS station 16010000
Q,, -0.122 -0.003 0.174 -0.144 -0.004 0.108
Q, -0.151 -0.004 0.093 -0.158 -0.004 0.079
Q50 -0.198 -0.005 0.027 -0.183 -0.004 0.041
Mean -0.181 -0.004 0.044 -0.266 -0.005 0.003
USGS station 16019000
Q, -0.208 -0.004 0.020 -0.176 -0.003 0.050
Q, -0.170 -0.004 0.058 -0.164 -0.002 0.068
Q, -0.210 -0.004 0.019 -0.226 -0.003 0.012
Mean -0.219 -0.005 0.014 -0.283 -0.004 0.002
USGS station 160680002
Q,, -0.018 0.000 0.849 0.007 0.000 0.943
Q, -0.070 -0.001 0.440 -0.009 0.000 0.922
Qs -0.127 -0.002 0.157 -0.098 -0.002 0.275
Mean -0.105 -0.003 0.244 -0.178 -0.003 0.047
USGS station 160715002
Qyo -0.101 -0.004 0.261 -0.061 -0.003 0.496
Q. -0.205 -0.008 0.022 -0.164 -0.007 0.068
Q,, -0.224 -0.008 0.012 -0.219 -0.007 0.014
Mean -0.172 -0.006 0.055 -0.254 -0.007 0.005
USGS station 16097500
Q,, -0.089 -0.001 0.323 -0.106 -0.001 0.236
Q70 -0.118 -0.002 0.189 -0.101 -0.002 0.263
Q,, -0.171 -0.003 0.057 -0.160 -0.002 0.074
Mean -0.110 -0.002 0.219 -0.195 -0.003 0.030
USGS station 16108000
Q,, -0.189 -0.002 0.035 -0.145 -0.002 0.106
Q. -0.207 -0.003 0.021 -0.197 -0.002 0.028
Q,, -0.210 -0.003 0.019 -0.197 -0.002 0.028
Mean -0.265 -0.004 0.003 -0.244 -0.003 0.007

3Continuous stream-gaging station located within the study area.

Analysis of Low Flows at Different Types of
Measurement Sites

The data points used to develop the statistical models
between the measurement site of interest and the index station
for computing low-flow duration discharges differ for different
types of measurement sites, which include short-term stations
and partial-record sites for this study. These measurement sites
are defined in the “Data-Collection Sites” section.

Short-Term Stations

A short-term continuous-record stream-gaging station
has less than 10 complete water years of natural-flow record.

The procedures for estimating low-flow duration discharges at
short-term stations are documented in Cheng (2016, p. 13—14)
and summarized as follows.

1. Extract daily mean discharges during stable streamflow
recessions from the short-term station. A streamflow
recession is the period when flows return to low-flow
conditions following a period of direct runoff. Stable
recession daily mean discharges are selected from
streamflow recessions that continue for 4 or more
consecutive days. The second to last day of each
streamflow recession was selected to be used in record
augmentation. The second to last day (instead of the last
day) of each streamflow recession was used because it
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yielded more concurrent data at the index and short-term
stations that can be used in record augmentation.

2.  Extract stable recession daily mean discharges from the
index stations using criteria in step 1, and select the stable
recession daily mean discharges that are less than the base-
period Q,, discharge (rather than the Q,, discharge). This
allows for the statistical relation to be defined for the full
range of low-flow statistics to be estimated, particularly for
cases in which stable recession daily mean discharges at Q,,
conditions are not available at the index station but stable
recession daily mean discharges at higher flow conditions
are available.

3. Determine pairs of concurrent stable recession daily
means between the short-term and index stations.
Concurrent stable recession daily mean discharges from
the short-term and index stations must be from at least 10
independent recessions.

4.  Using the data determined in the previous step, apply steps
2 and 3 of the initial procedures used prior to the application
of record-augmentation techniques as described in the
“Record Augmentation” section.

5. Develop a model, using the appropriate record-augmentation
technique (MOVE.1 or graphical) determined in step 4,
between concurrent stable recession daily means at the
short-term and index stations.

6. Using the model developed in the step 5, compute
flow-duration discharges at the short-term station from
corresponding flow-duration discharges at the index station
for the base period.

Partial-Record Sites

A partial-record site commonly has 10 or more systematic
(consistent) streamflow measurements at a location in the
stream. The procedures for estimating low-flow duration
discharges at partial-record sites are documented in Cheng
(2016, p. 14—-15) and are summarized as follows.

1. Determine daily mean discharges at the index stations that
are concurrent with the streamflow measurements at the
partial-record site, and select the daily mean discharges at
the index stations that are less than the Q,, discharge. This
allows for the statistical relation to be defined for the full
range of low-flow statistics to be estimated, particularly for
cases in which daily mean discharges at Q,, conditions are
not available at the index station but daily mean discharges
at higher flow conditions are available.

2. Using the data determined in step 1, apply steps 2 and 3
of the initial procedures used prior to the application of
record-augmentation techniques as described in the “Record
Augmentation” section.

3. Develop a model, using the appropriate record-augmentation
technique (MOVE.1 or graphical) determined in step 2,
between streamflow measurements at the partial-record site
and concurrent daily mean discharges at the index station.

4. Using the model developed in the step 3, compute
flow-duration discharges at the partial-record site from
corresponding flow-duration discharges at the index station
for the base period.

Results and Discussion

Estimates of natural low-flow duration discharges of short-
term stations and partial-record sites, and results of seepage
runs are discussed in the following sections. Data supporting the
interpretations and results of this study are available within the
report tables and from the USGS National Water Information
System (U.S. Geological Survey, 2020a,b). Map identifier (Map
ID) is used instead of the USGS station number for references
to partial-record and seepage-run discharge-measurement
sites. The index stations used, record-augmentation techniques
applied, and selected regression statistics computed for the
low-flow duration-discharge estimates at short-term stations and
partial-record sites in the study-area streams are summarized
in table 4. Estimated flow-duration discharges at partial-record
sites in the study-area streams are summarized in table 5
and figure 6. Flow-duration discharges at short-term stations
16052400 on Lawa‘i Stream and 16049000 on Hanapépé River
(table 2) were estimated using daily means at the stations and
those at the partial-record sites were estimated using discrete
discharge measurements collected at the sites.

Natural Low-Flow Duration Discharges

Short-Term Stations

Short-term stations on Waiahi (16057900) and right branch
Lawa‘i Streams (16052400) were established to serve as optional
index stations if the discharges at the partial-record sites did
not correlate well with discharges at other index stations. Both
stations monitored natural low-flow conditions—between Qg
and Q,;—that are of interest in this study. The Waiahi short-term
station had three complete water years of continuous low-flow
data (2017-19); water year 2016 was incomplete because the
station was installed in November 2015. Low-flow duration
discharges computed for water years 2017—19 range from 14 to
25 ft3/s (table 1). The Lawa‘i short-term station did not have any
complete water years of record because it was damaged twice by
high-flow events; therefore, low-flow duration discharges for the
period of record were not computed.

At continuous-record stream-gaging stations, an
instantaneous discharge record (at 15-min interval) is derived



19

Iscussion

Results and D

- 090 9S00 €60 (z0'0-"x) ,_ HOJJo SN
SP0+780 =4 THAOW  B0OE Weans reme] g 004CS091  eur soy vended SN BS eojoowey  [06€LT6STISSSIT Tid
- L0 $R00 680 :o.o\vs_ oy Jo SN
8S0+€H0 =4 THAOW  BOOE weang reme] g 0025091 Yo BO[OY] SN BS BIYord  [08T18T6STESSSTT 11d
- - - - - - UONB[RLOI ON DY IMyMyey S W 9'g weang rend  [0€0ETOSILELSIT 01d
- - - - - - UOLB[OLI0d ON Py vzodey Je weang MMIMIIMEN  [09ZET6STEESSTT 6d
MO}
- - - - - - UONB[OLI0 ON winax jo SN Areinquy nneweue  [09$€76S1€T6S1T 8d
SY
- - - - - - uonepLoo oN  eredey] § S W 9'Q S nneweue  [067HT6S1LE00TT Ld
osﬂd Ju
01 - - - - eorydery  IOARY enfrep\ AN JO G5 00089091 S eredes| N SN I [ jS nneweue  [00vHT651#S007T 9d
Y
.mRQﬁM S SN Lot 9'0 1S Eﬁwg.m:mm
(as1-% snyry Iu +89  106THC6S1LE00TT
6 IS0 LSOO 880 €90+110=4 T'AAOW JoAry enjrepm AN JO 94 00089091 eredey] N S W [ 0§ nneweuey  + [00vYC6S1¥S00CC  Ld +9d
(L80-"%) BoNE[Iy U
11 ¥9'0 0¥0'0 T60 89°0++%0T =4 T'HAOW ¥ 00F e Ie DS ueme[eq 00526091  YoNQ enjieps N SN & QL0 IS BT [0£28265 14C20TT sd
3 enrem
N B[] SN BS 0Y0NreM AS
(8T1-%) ASNOYIMOJ +3d T0¥SLT6SISTEOTT
01 850 8010 680 L8T+S90 =4 THAONW Ioddn SN 1S IEIEA, 006L509T  BNIRAN N BINIIIT SO BS OYONIeM AN + [0¥SLT6ST9E0TT  #d + €d
#90-"X) BOWIBA TU
8 790 €600 ¥60 THO+SET =4 THAOW 1 0TS'C e 18 S Je[ere 00061091 eIul S[OH dng SN PARY enfiep AN 10908765 197£07T u
eedey] qu
01 - - - - [eorydern  ng eeyordQ yourIg Yo 00S1L091 1o SN goweangeeypedOo Gy 10SSET6STETHOTT Id
S9)IS p10dal-|ellied
- - - - - - UONR[OLI0D ON asnoyromod 1oddn SN 1S 1yerepm 006LS09T 0065091
8T1-%) anyry Iu
01 950 TIEI'0 160 9LT+100 =4 THAOW JoAry enjrepm AN JO g4 00089091  HOJ JO SN Y 00€ Weang remeT gy 00¥TS09T  00¥CS091
anyry.Ju [R[H
- - - - - eorydern  xoARy enfrepm AN JO 99 00089091 Tu njg ryenuely M[q Arg adodeuey 0006¥09T 0006091
suone;s buibeb-weas;s piodsi-snonupUod Wis}-HoYS
uopejuawbne 3 3Ny J anbiuyos) . .
pi09ai uj pasn (u) 434S wouy pajessuab uogenba uopejuswibne IH 1ENE) ‘SULEU UORE}S PuE Jaquinu |H ‘leney| ‘oweu uoljels SOSN Jaquinu uonels SOSN  edl deny
y uoissaibor I'INON uofje)s S9SN Uim uone)s xapu| : ’ ’ ¢
sjuswiainsesaw Jo JaquINN solsie)s :o_mmohmow_ -p10d33y

[sowreu uonjels SOS Ul SyIBW [BINLIORIP

uelEMEBH JO 9sn o) opn[daid suopelrwl] oseqele(q "AoUdIonJo JO JUSIOLFI0O PYI[AING-YSEN PIYIPOW 7 {JOLIO drenbs et J00I “GSIATY USIOLFI00 UONE[OLIO0D 4 {wel3o1d 103e)I[108,] UOISUIXF PIOIdY MOPWRINS
ITUS ‘o1qeordde 10u ‘- ons p10021 [ented oy 18 9SIBYISIP UONBIND MO-MO] PIIBWNSI Y] JO WPLILSO] ()[-9S8q “{ ‘UONEIS XIPUI oY) 18 9FIBYISIP UONBINP MOP-mo] pandwod oy Jo wpLesof (1-9seq “y <
9dAJ, uOISUSIXF 9oUBLIEA JO QOUBUAUIBIA ‘[ 'HAOIN opminfe ‘e ‘youerq iseq ‘gq ‘AemySIH AMH ISoMUINOS ‘A S ISOA ‘A SWBINSUMOP ‘S(T PrOY “PY ‘YINOS ‘S LHOAIISIY ‘Soy ‘Arenquy ‘quy 104 yInos ‘IS
YoNd 1d SYHMON ‘N [0 YHON “IN ‘youelg YoT ‘g7 ‘o[ ‘T ‘wreansdn ‘S 909) ‘Y youetg WSTY ‘G (1edU ‘U {WeanS NS iMo[dq ‘M[q SIOATY ‘ATY ‘lemeH ‘TH ‘A9AIng [e9130[090) S ‘SOS {IOYnuapI ‘di]

‘IleMeH ‘1eney| 1seayinos ‘swieal)s eale-Apnjs sy} Ui s8yis piodal-ferled o} sonsie)s uoisseibal pajosjas pue ‘suolienbs UoissalBal ‘spoyell uoljejuslubne-pioos) Jo Alewwng  “p ajqel



20

Table 4—Continued

Low-Flow Characteristics of Streams from Wailua to Hanapépé, Kaua‘i, Hawai'i

(n) used in record
E augmentation

RMSE

Regression statistics  Number of measurements
r

generated from SREF

MOVE.1 regression
equation

c
, S o
B S
TET
o c =
o @ £
e E©
=R
®

Index station with USGS station
number and station name, Kauai, HI

USGS station name, Kauai, HI

USGS station number

Map ID@

10

Graphical

16071500 Left Branch Opaekaa Str

Kuia Str 0.7 mi W of Papuaa Res

215822159282601

P13

nr Kapaa

16052400 RB Lawai Stream 300 ft

12

Y= -060+244 0.90 0379 0.55

MOVE.1

Kuia Str trib 1 mi SW of Papuaa Res

215751159283901

P14

(X~ 0.02)

US of fork
No correlation

Omao Stream at Kaumualii Hwy

215608159285801
215538159292301

215751159311801

P15
P16
P17

No correlation

Poeleele Stream at Kaumualii Hwy

0.90 0.099 0.59

i

Y= 0.50+1.55

MOVE.1

16097500 Halaulani Str at alt 400 ft

Wahiawa Stream US Alexander Res

(X —0.81)

nr Kilauea

No correlation

LB Wahiawa Str 400 ft US Alexander

215754159311601

P18

Res

aRefer to figure 1 for station location.

from the rating curve developed for the station and used to
compute a record of daily means. An instantaneous discharge is
not computed if the corresponding instantaneous stage is outside
the range of stage values applicable to the rating curve developed
for the station. Low-flow duration discharges for water years
2017-19 at the Waiahi short-term station were computed assuming
the daily mean flow for days with incomplete instantaneous
discharge record to be higher than the median flow. To determine
the validity of this assumption, low-flow duration discharges
computed using the assumption were compared to low-flow
duration discharges computed by including days during which the
daily means were computed from partial instantaneous discharge
record. The Waiahi short-term station had 195 days out of 1,095
days (17 percent) with missing instantaneous discharge values
for water years 2017—19. For 187 of these days, the daily means
were not computed owing to high instantaneous stages falling
outside of the range of stage values applicable to the rating curve.
Since the daily means for these days computed from partial
instantaneous record were higher than the median flow, these
daily means would not affect the computed low-flow duration
discharges. For the remaining 8 days with missing daily means,
the daily means were not computed owing to low instantaneous
stages falling outside of the range of stage values applicable to
the rating curve. The daily means for these days computed from
partial instantaneous record were lower than the median flow and
would affect the computation of low-flow duration discharges at
the station. Low-flow duration discharges computed by including
daily means for days with partial instantaneous discharge record
and those computed using the assumption showed differences of
0.2 ft3/s for the Q,, and Q,, discharges; 0.1 ft3/s for the Qs Qyp
and Q discharges; 0.05 ft°/s for the Q,; and Q,; discharges; 0.04
ft3/s for the Q,, discharge; and no difference for the Q,, and Q,;
discharges. Therefore, computing low-flow duration discharges
at the Waiahi station using only days with complete instantaneous
discharge record is reasonable.

The representativeness of low-flow duration discharges
at the Waiahi short-term station of long-term flow conditions
was evaluated by comparing low-flow duration discharges
computed for the short-term period (water years 2017—19)
with those computed for the base period (1961-2019) at
the two active long-term stations in the study area—station
16068000 on east branch of North Fork Wailua River and
station 16071500 on left branch ‘Opaeka‘a Stream. A majority
of the differences between low-flow duration discharges
computed for water years 2017—-19, which correspond to
complete water years of data available at the Waiahi short-
term station, and those computed for the base period were
2 percent or less at both long-term stations. Data at Waiahi
station showed the highest correlation with data at index
station 16068000, with a correlation coefficient () of 0.73.
However, this  value does not meet acceptable values of  for
record augmentation set forth in this study (r values >0.80);
therefore, low-flow duration discharges at the Waiahi short-
term station were not extended to the base period. Using the
duration discharges at station 16068000 for the period 2017—
19 and the base period (table 2), as well as the annual mean
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rainfall at Wai‘ale‘ale rain gage (fig. 3), it was determined that
the period 2017-19 was generally wetter than the base period.
Therefore, low-flow duration discharges computed for water
years 201719 at the Waiahi short-term station may also be
higher than those for the base period.

Low-flow duration discharges at the Lawa‘i short-term
station were extended to the base period using index station
16068000 on east branch of North Fork Wailua River in the
MOVE.I technique (table 4). Two outliers were removed
from the regression relation. Low-flow duration discharges
computed for the base period range from 0.35 to 3 ft3/s
(table 2) and these were used to estimate low-flow duration
discharges at relevant partial-record sites.

Station 16049000 on Hanap@pé River monitored natural
flow during calendar year 2017, when upstream surface-water
diversions on right and left branch Kd‘ula Rivers were not in
operation (Howard Greene, Gay & Robinson, oral commun.,
2018). Flow-duration statistics at the station were estimated using
the procedures to estimate low-flow duration discharges at short-
term stations. Index station 16068000 on east branch of North
Fork Wailua River was used in the graphical-correlation technique
to extend the Hanapépg River calendar year 2017 record to the
base period (fig. 74). One outlier was removed from the graphical
fit. Low-flow duration discharges computed for the base period
range from 42 to 69 ft3/s (table 2).

Partial-Record Sites

The MOVE.1 technique was used to estimate low-flow
duration discharges for a majority of the partial-record sites
in the study area, including North Fork Wailua River, the
confluence of north and south Waikoko Streams, ‘Ili‘ili‘ula
Stream, the confluence of north and south fork Hanama“‘ulu
Streams, Paohia Stream, Kamo‘oloa Stream, a branch of Ku‘ia
Stream, and Wahiawa Stream. Discharges at the confluence of
north and south fork Waikoko Streams and at the confluence
of north and south fork Hanama‘ulu Streams were the sum
of discharges measured at each stream fork, respectively.
Selected natural low-flow duration-discharge estimates at the
partial-record sites are listed in table 5. Measured discharges at
the partial-record sites and concurrent daily mean discharges
at selected index station are summarized in tables 6—13.

A measured discharge at a partial-record site was not
used in record augmentation if (1) the discharge was measured
when the hydrograph from the selected index station indicated
highly variable flows, (2) the discharge was measured on
the same streamflow recession as another measurement,

(3) the discharge has high measurement error and a second
measurement (check measurement) may have been made
subsequent to the first measurement at a different nearby
measurement section in an effort to reduce measurement error,
or (4) the concurrent daily mean discharge at the index station
is of provisional status at the time this report was prepared.
The MOVE.1 relations between measured discharges at the
partial-record sites and concurrent daily mean discharges at
the index stations have correlation coefficients (r) that range

from 0.88 to 0.94 and modified Nash-Sutcliff coefficients
of efficiency (£) that range from 0.51 to 0.64. Note that the
closer the coefficient of efficiency is to 1, the more accurate
the statistical model is. Low-flow duration discharges
for three sites—North Fork Wailua River, confluence of
north and south fork Hanama“‘ulu Streams, and Wahiawa
Stream—were estimated with less than 10 measurements.
Measured discharges at the partial-record sites used for record
augmentation generally capture a wide distribution of flows
between the Q,, and Q, duration discharges that are of interest
in this study. Therefore, the low-flow duration-discharge
estimates are considered to be representative of the entire
range of low-flow conditions in these streams.

Low-flow duration discharges for partial-record sites
on right branch ‘Opaeka‘a Stream, north fork Hanama‘ulu
Stream, and a branch of Ku‘ia Stream were estimated using
the graphical-correlation technique (table 4). A curvilinear
trend provides the best fit to the plot of measured discharges at
the partial-record sites and concurrent daily mean discharges
at the selected index station (fig. 7). Low-flow duration
discharges were estimated with 10 measurements at each
partial-record site and the measured discharges used for
record augmentation generally capture a wide distribution of
flows between the Q,, and Q. duration discharges that are
of interest in this study (tables 9, 14, and 15). Therefore, the
low-flow duration-discharge estimates are considered to be
representative of the entire range of low-flow conditions in
these streams.

Measured discharges at partial-record sites on south
fork Hanama‘ulu Stream (table 9), tributary of Hanama‘ulu
Stream (table 9), Nawiliwili Stream (table 16), Pii‘ali Stream
(table 17), left branch Wahiawa Stream (table 13), ‘Oma‘o
Stream (table 18), and Po°ele‘ele Stream (table 18) do not
correlate with data at any index stations. On the day with
the highest discharge at each of these partial-record sites,
the corresponding concurrent daily mean discharge at each
index station was greater than the median discharge at that
index station. Thus, low-flow duration discharges at south
fork Hanama‘ulu Stream, tributary of Hanama“ulu Stream,
‘Oma‘o Stream, and Po‘ele‘ele Stream are likely below the
highest discharges measured during the study period of 0.44,
0.40, 0.19, and 0.22 ft3/s, respectively. Data collected at the
Nawiliwili Stream partial-record site may have been affected
by random diverted-flow releases from the upper Lthu‘e Ditch
(fig. 5). Accessible reaches of Pii‘ali Stream were limited
owing to streambank vegetation and streambed material, and
the only discharge-measurement section available based on
reconnaissance survey was downstream from a pond in a golf
course. Twelve discharge measurements were collected during
the study period; however, the discharges do not correlate with
data at any index stations because the measured discharges
may have been affected by draining of the pond. Discharge
measurements collected at left branch Wahiawa Stream do not
correlate with data at any index stations nor do they correlate
with data at the partial-record site located on main channel of
Wahiawa Stream.
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Discharge, in cubic feet per second,
Hanapépé River at gaging station 16049000

Discharge, in cubic feet per second,
Hanama'ulu Stream at partial-record site 220054159244001
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Discharge, in cubic feet per second,
right branch ‘Opaeka‘a Stream at partial-record site 220423159235501

Discharge, in cubic feet per second,
Ku'ia Stream at partial-record site 215822159282601
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and concurrent daily mean discharges at index stations, southeast Kaua'i, Hawai‘i. A, Concurrent daily mean discharges at stream-gaging

station 16049000 on Hanapépé River and concurrent daily mean discharges at stream-gaging station 16068000 on east branch of North
Fork Wailua River. B, Partial-record site 220423159235501 on right branch ‘Opaeka‘a Stream and concurrent daily mean discharges at
stream-gaging station 16071500 on left branch ‘Opaeka‘a Stream. C, Partial-record site 220054159244001 on north fork Hanama‘ulu
Stream and concurrent daily mean discharges at stream-gaging station 16068000 on east branch of North Fork Wailua River. D, Partial-
record site 215822159282601 on Ku'ia Stream and concurrent daily mean discharges at stream-gaging station 16071500 on left branch

‘Opaeka‘a Stream.
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Table 6. Measured discharges at partial-record site 220346159280601 on North Fork Wailua River and concurrent daily mean discharges at stream-gaging
station 16019000 on Wai‘alae Stream, southeast Kaua'i, Hawaii.

[ft3/s, cubic feet per second; ID, identifier. Measured discharge that is underlined is excluded from record augmentation because the hydrograph from the index station
indicated highly variable flows during the time the measurement was made]

Date Daily mean.discharge in ft3ls Measured discharge in fthl on North Fork Wailua River
on Wai‘alae Stream (Map ID P2 in fig. 1, tables 4-5)
02/22/2016 8.20 20.2
04/25/2016 9.34 34.0
06/08/2016 6.36 23.6
09/27/2016 3.85 22.3
01/19/2017 2.90 18.7
02/22/2017 5.52 11.3
05/04/2017 3.01 19.7
08/03/2017 2.20 18.1
11/20/2017 7.21 174
02/12/2018 4.56 21.2
02/22/2019 7.01 26.4

Table 7. Measured discharges at partial-record sites 220326159275401 on north fork Waikoko Stream and 220325159275401 on south fork
Waikoko Stream and concurrent daily mean discharges at stream-gaging station 16057900 on Waiahi Stream, southeast Kaua'i, Hawai'i.

[ft3/s, cubic feet per second; ID, identifier]

Daily mean discharge in Measured discharge in ft3/s Measured discharge in ft%/s Measured discharge in ft%/s
Date ftdls on north fork Waikoko Stream on south fork Waikoko Stream on north and south fork
on Waiahi Stream (Map ID P3 in fig. 1, tables 4-5) (Map ID P4 in fig. 1, tables 4-5) Waikoko Streams combined
02/22/2016 11.8 2.45 0.42 2.87
04/25/2016 30.0 7.98 2.38 10.4
06/08/2016 20.7 4.06 1.40 5.46
09/27/2016 23.7 4.47 1.28 5.75
01/19/2017 15.2 1.82 0.57 2.39
05/04/2017 19.4 2.02 1.30 3.32
08/03/2017 17.8 2.75 0.81 3.56
09/28/2017 14.9 1.92 0.57 2.49
02/12/2018 22.1 4.92 1.58 6.50
02/22/2019 20.9 5.15 1.87 7.02

Table 8. Measured discharges at partial-record site 220224159282301 on ‘lli‘ili'ula Stream and concurrent daily mean
discharges at stream-gaging station 16097500 on Halaulani Stream, southeast Kaua'i, Hawai'i.

[ft3/s, cubic feet per second; ID, identifier. Measured discharge that is underlined is excluded from record augmentation because the hydrograph from the index
station indicated highly variable flows during the time the measurement was made]

Date Daily mean discharge in ft3/s Measured discharge in ft%/s on ‘lliili‘ula Stream
on Halaulani Stream (Map ID P5 in fig. 1, tables 4-5)
03/11/1983 5.30 9.80
02/24/2016 6.37 9.01
05/16/2016 6.18 9.16
06/07/2016 11.1 13.2
04/14/2017 8.25 21.0
01/17/2018 4.09 7.50
03/07/2018 9.51 12.8
05/01/2018 10.4 13.8
05/09/2018 9.56 12.4
08/08/2018 9.06 13.8
05/13/2019 6.09 9.27

12/09/2019 7.41 13.0
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Table 9. Measured discharges at partial-record sites 220054159244001 on north fork Hanama‘ulu Stream, 220037159242901 on south fork
Hanama‘ulu Stream, and 215923159235601 on tributary of Hanama‘ulu Stream, and concurrent daily mean discharges at stream-gaging station
16068000 on east branch of North Fork Wailua River, southeast Kaua‘i, Hawai'i.

[ft3/s, cubic feet per second; ID, identifier; --, no data. Measured discharge that is underlined is excluded from record augmentation because the hydrograph from
the index station indicated highly variable flows during the time the mseasurement was made]

Daily mean discharge

Measured discharge inft/s ~ Measured discharge in ft3/s

Measured discharge inft/s  Measured discharge in ft%/s

Date in ft%fs on north fork Hanama‘ulu on south fork Hanama‘ulu on north_and south fork on tributary of Hanama‘ulu
on east branch of North Stream Stream Hanama‘ulu Streams Stream
Fork Wailua River (Map ID P6 in fig. 1, tables 4-5) (Map ID P7 in fig. 1, tables 4-5) combined (Map ID P8 in fig. 1, tables 4-5)

02/25/2016 11.8 0.80 0.25 1.05 --
04/27/2016 33.6 1.33 0.41 1.74 0.40
05/16/2016 17.8 1.10 0.44 1.542 --
05/20/2016 30.4 -- -- -- 0.06
06/06/2016 29.1 -- -- -- 0.06
06/07/2016 34.3 091 -- -- --
06/13/2016 26.5 -- 0.29 -- --
11/07/2016 17.4 1.05 0.23 1.28 0.05
12/16/2016 28.3 1.21 0.20 1.41 0.05
01/05/2017 43.1 143 0.10 1.53 0.07
07/20/2017 19.9 1.32 -- -- --
09/22/2017 14.3 0.62 0.18 0.80 0.17
10/19/2017 32.9 1.25 0.34 1.59 --
10/30/2017 21.8 0.99 0.40 1.39 --
12/08/2017 29.2 -- 0.35 -- --
12/12/2017 23.8 1.13 0.39 1.52 --
01/17/2018 13.1 0.79 0.24 1.03 =

dMeasured discharge is excluded from record augmentation because it is an outlier.

Table 10. Measured discharges at partial-record site 215853159281801
on Paohia Stream and concurrent daily mean discharges at stream-gaging
station 16052400 Lawa' Stream, southeast Kaua'i, Hawai'.

[ft3/s, cubic feet per second; ID, identifier; --, no data. Measured discharge that
is underlined is excluded from record augmentation because the hydrograph
from the index station indicated highly variable flows during the time the
measurement was made]

Table 11.  Measured discharges at partial-record site 215851159273901 on
Kamo'oloa Stream and concurrent daily mean discharges at stream-gaging
station 16052400 Lawa' Stream, southeast Kaua'i, Hawai'.

[ft3/s, cubic feet per second; ID, identifier; --, no data. Measured discharge that
is underlined is excluded from record augmentation because the hydrograph
from the index station indicated highly variable flows during the time the

measurement was made]

Daily mean discharge

Measured discharge in ft%/s

Daily mean discharge ~ Measured discharge in t3/s

Date in ft%/s on Paohia Stream Date in ft¥/s on Kamo‘oloa Stream
on Lawa'i Stream  (Map ID P11 in fig. 1, tables 4-5) on Lawa‘i Stream  (Map ID P12 in fig. 1, tables 4-5)
06/10/2016 1.39 2.97 11/29/2016 3.18 11.1
11/18/2016 0.79 1.70 12/16/2016 1.33 6.96
04/06/2017 - 1.75 03/16/2017 -- 7.82
06/01/2017 1.11 3.22 06/01/2017 1.11 7.28
08/10/2017 0.25 1.71 08/10/2017 0.25 4.20
09/07/2017 0.47 1.56 09/07/2017 0.47 430
12/07/2017 1.60 2.90 10/30/2017 1.07 7.15
12/21/2017 0.59 1.88 11/21/2017 1.46 8.24
05/02/2018 2.992 5.33 12/12/2017 1.18 6.17
08/07/2018 1.442 3.95 12/21/2017 0.59 444
08/21/2018 1.432 3.46 12/22/2017 0.59 4.34b
11/20/2018 1.612 3.28 02/08/2018 -- 15.5
dMeasured discharge. Continuous streamgaging station 160524000 on 03/12/2018 2.19 7.99
Lawa‘i Stream was damaged in March 2018. 08/21/2018 1.432 9.20

dMeasured discharge. Continuous streamgaging station 160524000 on
Lawa‘i Stream was damaged in March 2018.

PMeasured discharge is excluded from record augmentation because it is on
the same recession as the discharge measured on 12/21/2017.
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Table 12. Measured discharges at partial-record site 215751159283901 on  Table 14. Measured discharges at partial-record site 220423159235501
Ku'ia Stream and concurrent daily mean discharges at stream-gaging station on right branch ‘Opaeka‘a Stream and concurrent daily mean discharges at

16052400 Lawa'i Stream, southeast Kaua'i, Hawai'. stream-gaging station 16071500 on left branch ‘Opaeka‘a Stream, southeast

[ft3/s, cubic feet per second; ID, identifier; -, no data. Measured discharge that Kaua', Hawa.

is underlined is excluded from record augmentation because the hydrograph [ft3/s, cubic feet per second; ID, identifier. Measured discharge that is

from the index station indicated highly variable flows during the time the underlined is excluded from record augmentation due to insufficent data at

measurement was made] the index station that could be used ascertain stable-flow conditions]

Daily mean discharge ~ Measured discharge in ft%/s Daily mean discharge ~ Measured discharge in ft3/s
Date in ft3/s on Ku‘ia Stream Date in ft3ls on right branch ‘Opaeka‘a
on Lawa‘i Stream  (Map ID P14 in fig. 1, tables 4-5) _on left branch Stream

05/18/2016 0.63 0.18 ‘Opaeka‘a Stream (Map ID P1 in fig. 1, tables 4-5)
06/10/2016 1.39 0.50 06/13/2016 1.06 0.89
11/18/2016 0.79 0.21 10/27/2016 0.93 0.94
12/29/2016 3.16 2.24 12/09/2016 1.10 1.24
03/16/2017 -- 0.96 02/02/2017 0.80 0.76
04/06/2017 -- 0.23 08/24/2017 0.54 0.44
06/01/2017 1.11 0.49 10/19/2017 1.00 0.93
08/10/2017 0.25 0.008 12/08/2017 1.38 1.07
09/07/2017 0.47 0.006 12/22/2017 1.11 0.94
11/21/2017 1.46 0.44b 01/18/2018 0.88 0.70
12/21/2017 0.59 0.21 08/13/2018 2.50 1.30
05/02/2018 2.994 1.12 08/22/2018 1.69 1.11
08/07/2018 1.442 0.82
08/21/2018 1.438 0.54
11/20/2018 1.612 0.62

dMeasured discharge. Continuous streamgaging station 160524000 on
Lawa‘i Stream was damaged in March 2018.

®Measured discharge is excluded from record augmentation because of high
measurement error.

Table 13. Measured discharges at partial-record sites 215751159311801 on Wahiawa Stream and 215754159311601 on
left branch Wahiawa Stream, and concurrent daily mean discharges at stream-gaging station 16097500 on Halaulani Stream,
southeast Kaua'i, Hawai.

[ft3/s, cubic feet per second; ID, identifier; -, no data. Measured discharge that is underlined is excluded from record augmentation
because the hydrograph from the index station indicated highly variable flows during the time the measurement was made]

Daily mean discharge Measured discharge in ft/s Measured discharge in ft/s

Date in ft3/s on Wahiawa Stream on left branch Wahiawa Stream

on Halaulani Stream  (Map ID P17 in fig. 1, tables 4-5)  (Map ID P18 in fig. 1, tables 4-5)
03/14/2017 5.77 2.28 3.07
06/06/2017 8.49 4.46 0.23
02/08/2018 11.4 6.92 0.69
06/20/2018 7.54 3.42 0.31
08/21/2019 4.55 2.37 0.11
10/23/2019 6.62 4.85 0.34
11/07/2019 5.04 1.91 0.20
11/12/2019 4.97 1.85 0.11
12/02/2019 16.2 9.07 0.54
01/22/2020 -4 3.76° 0.64

aApproved data not available as of 6/23/2020.

YMeasured discharge is excluded from record augmentation because concurrent daily mean discharge on Halaulani Stream is
of provisional status.
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Table 15. Measured discharges at partial-record site 215822159282601 on
Ku'ia Stream and concurrent daily mean discharges at stream-gaging station
16071500 on left branch ‘Opaeka‘a Stream, southeast Kaua'i, Hawaii.

[ft3/s, cubic feet per second; ID, identifier]

Table 18. Measured discharges at partial-record sites 215608159285801 on
‘Oma‘o Stream and 215538159292301 on Pa'ele‘ele Stream, southeast Kaua'i,
Hawaifi.

[ft3/s, cubic feet per second; ID, identifier; --, no data]

Daily mean discharge in Measured discharge in ft®/s

3
Date on left bra:cl; ‘Opacka‘a on Ku'ia Stream
(Map ID P13 in fig. 1, tables 4-5)
Stream
06/10/2016 1.04 4.38
11/18/2016 0.58 3.76
12/29/2016 1.47 6.20
03/16/2017 1.53 5.23
04/06/2017 1.07 3.92
06/01/2017 0.86 3.87
08/10/2017 0.58 3.30
09/07/2017 0.41 3.13
10/30/2017 0.96 4.02
12/07/2017 1.45 5.87

Table 16. Measured discharges at partial-record site 215833159232601 on
Nawiliwili Stream, southeast Kaua'i, Hawai'i.

[ft3/s, cubic feet per second; ID, identifier]

Measured discharge in ft3/s

Date on Nawiliwili Stream
(Map ID P9 in fig. 1, tables 4-5)
10/09/1996 0.51
10/05/2017 0.50
10/11/2017 1.77
10/19/2017 0.68
11/21/2017 0.93
12/07/2017 0.62
01/17/2018 0.51
03/07/2018 0.74
08/07/2018 1.62
08/13/2018 1.82
05/13/2019 3.64
06/07/2019 2.57
09/12/2019 1.54

Table 17. Measured discharges at partial-record site 215737159230301 on
Pd‘ali Stream, southeast Kaua'i, Hawai'.

[ft3/s, cubic feet per second; 1D, identifier]

Measured discharge in ft3/s

Date on Pu‘ali Stream
(Map ID P10 in fig. 1, tables 4-5)
02/26/2016 1.88
04/29/2016 3.05
05/17/2016 1.82
06/09/2016 2.01
09/28/2016 0.82
10/27/2016 1.00
11/16/2016 1.33
03/16/2017 2.24
04/26/2017 1.85
06/06/2017 6.39
10/11/2017 2.18
11/21/2017 2.65

Measured discharge in ft%/s Measured discharge in ft3/s

Date on ‘Oma‘o Stream on Po‘ele‘ele Stream
(Map ID P15 in fig. 1, tables 4-5) (Map ID P16 in fig. 1, tables 4-5)
09/15/1939 0.39 --
09/15/1939 0.23 --
09/18/1939 0.38 --
09/18/1939 0.25 --
12/04/1939 0.49 --
12/04/1939 0.30 --
12/08/1939 0.51 --
12/08/1939 0.30 --
01/17/1940 0.31 --
01/17/1940 0.51 --
01/26/1940 0.28 --
01/26/1940 0.46 --
02/26/1940 0.35 --
02/26/1940 0.22 --
03/15/1940 0.37 --
03/15/1940 0.23 --
02/23/2016 0.11 0.04
04/26/2016 0.08 0.19
05/17/2016 0.13 0.08
06/09/2016 0.18 0.06
09/28/2016 0.19 0.22
11/16/2016 0.19 0.22
01/18/2018 0.00 0.06

Streamflow Gains and Losses

As part of this study, a seepage run was conducted on all
study-area streams except Hanama‘ulu Stream because discharge
measurements from three previous seepage runs are available,
and Pii‘ali Stream because many reaches of the stream were
inaccessible. Results of available seepage runs on study-area
streams are discussed in upstream to downstream order. Seepage
gains and losses along a reach were computed as the difference
between the upstream and downstream discharges, accounting
for major tributary inflows and diversions of water within the
reach. To determine whether a stream supports mauka to makai
flow under natural-flow conditions, seepage rates (expressed
as the streamflow gain or loss in ft3/s per mile of stream reach
[(ft3/s)/mi]) computed using discharges on measured reaches
were extrapolated to nearby reaches on the same stream where
measurements were not available.

North Fork of Wailua River

Discharge measurements from two seepage runs are
available to characterize seepage gains and losses on selected
reaches of North Fork Wailua River. The February 22, 2017,
seepage run (fig. 8) was conducted under conditions when
index station 16068000 on east branch North Fork Wailua River
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30 Low-Flow Characteristics of Streams from Wailua to Hanapépé, Kaua‘i, Hawai'i

was flowing at about a Q.. discharge (daily mean of 19.8 ft3/s,
table 2), and the discharge measured at the partial-record site
(P2, map identifier in the figure corresponds to the location of
the first major stream in discussion) was flowing below a Q,,
discharge (daily mean of 11.3 ft3/s, table 5). The September
21, 1982, seepage run (fig. 9) was conducted under conditions
when index station 16068000 was flowing above the median-
flow discharge (daily mean of 37.0 ft*/s, table 2), and discharge
measured at partial-record site P2, which was 24.3 ft3/s
computed as the sum of discharges measured at sites A2 and A3,
was flowing at a Q discharge (table 5). No dry reaches in the
main stream channel were observed during the seepage runs.

The 2017 seepage run (fig. 8) consists of 12 measurement
sites located between altitudes of about 30 and 1,110 ft, with flows
in the main stream channel ranging from 11.3 to 65.0 ft3/s. The
seepage run was conducted under natural-flow conditions; Stable
Storm Ditch was abandoned and all flow diverted by the Ili‘ili‘ula
North Wailua Ditch intake was returned to the river immediately
downstream of the intake beginning the day prior to the seepage
run at 15:00 hours and continuing through the seepage run.

The Wailua Ditch intake was not active during the seepage run;
however, a small amount of flow from the reservoir was returned
to the river by way of spillway A at Kuamo‘o Road (A17).

The river generally gained flow in the reach downstream from
‘Ili‘ili‘ula North Wailua Ditch intake (P2) to site A15. This gain is
presumed to originate mainly from groundwater discharge from a
thickly saturated hydrogeologic setting. In the reach between site
AL15 and about 2 mi upstream from the river mouth (A20), the
measured loss of 0.2 ft3/s does not include flow from a tributary
near the A‘ahoaka‘a Ditch intake; thus, the actual seepage loss is
greater than computed.

The 1982 seepage run (fig. 9) consists of 17 measurement
sites located between altitudes of about 30 and 1,110 ft, with flows
in the main stream channel ranging from 23.5 to 82.1 ft%/s. Flows
were measured within the same stream reach as the 2017 seepage
run. The 1982 seepage run was conducted following a long period
of high rainfall, which contributed to higher base flows in the river.
Diversions affecting streamflow during the seepage run include the
‘Tli‘ili“ula North Wailua Ditch intake and the streamflow-diversion
intake to Wailua Reservoir. Discharge measurements indicate
generally a gaining reach between ‘Ili‘ili‘ula North Wailua Ditch
intake (A2) and about 2 miles upstream from the river mouth
(A20) with the most substantial gains in the lower reach between
sites A15 and A20.

Under flow conditions of the seepage run, North Fork Wailua
River flows continuously from the ‘Ili‘ili‘ula North Wailua Ditch
level to site A20 under natural-flow conditions. Under diverted-
flow conditions when ‘Ili‘ili‘ula North Wailua Ditch intake
diverts all the low flow in the stream, the stream may run dry in
the reach between the intake and the river’s confluence with the
first major tributary (A4). Most of North Fork Wailua River is
within the thickly saturated hydrogeologic setting (fig. 4), where
the groundwater level is above stream altitude and groundwater
typically discharges into the stream. Extrapolation of seepage rates
on North Fork Wailua River to the downstream unmeasured reach
to determine flow continuity from site A20 to the confluence with

South Fork Wailua River is not appropriate because the seepage
rates include unmeasured inflows from tributaries.

South Fork of Wailua River

South Fork Wailua River begins at the confluence of major
tributaries ‘Ili‘ili‘ula and Waiahi Streams. Tributary Waikoko
Stream joins with Stable Storm Ditch and discharges to
‘Ili‘ili‘ula Stream. Discharge measurements from four seepage
runs are available to characterize seepage gains and losses on
selected reaches of the major tributaries and South Fork Wailua
River. As part of this study, seepage runs were conducted for
Waikoko Stream on September 28, 2017, ‘Ili‘ili‘ula Stream on
December 9, 2019, and Waiahi Stream and South Fork Wailua
River on January 21, 2020 (fig. 10, map areas B and C). The
seepage runs were conducted during conditions when long-term
station 16068000 was steadily flowing below a Q,, discharge
(daily mean of 12.1 ft3/s, table 2) for the 2017 Waikoko Stream
seepage run, and above a median discharge for the 2019
‘Ili“ili‘ula Stream (daily mean of 40.4 ft3/s, table 2), 2020
Waiahi Stream and South Fork Wailua River seepage runs (daily
mean of 41.1 ft3/s, table 2). The March 11, 1983, seepage run
(fig. 11, map areas B and C) was conducted during conditions
when long-term station 16068000 was flowing at about a Q;
discharge (daily mean of 13.0 ft*/s, table 2).

The 2017, 2019, and 2020 seepage runs (fig. 10, map areas
B and C) were conducted under diverted-flow conditions; intakes
at ‘Ili‘ili‘ula North Wailua Ditch, South Intake Ditch, Waiahi-
Kuia Aqueduct, transmission ditch between ‘Ili‘ili“ula and Waiahi
Streams, and Hanama‘ulu Ditch were in operation during the
seepage runs. Stable Storm Ditch conveyed water from North Fork
Wailua River to Waikoko Stream, which discharges into ‘Ili‘ili‘ula
Stream upstream from its confluence with Waiahi Stream. Intakes
at the North Intake Ditch and upper Lihu‘e Ditch on ‘Ili‘ili‘ula
Stream were inactive during the seepage runs. Not all flow
contributions from major tributaries to the river were considered in
the calculation of seepage gains and losses owing to inaccessibility
of the stream sites. The 2017 seepage run on Waikoko Stream
(fig. 10, map area B) consists of five measurement sites located
between altitudes of about 640 and 1,110 ft, with flows in the
main stream channel ranging from 0.35 to 1.64 ft%/s. Discharge
measurements collected during the seepage run show a net gain
in the 2.2-mi reach between the ‘Ili‘ili‘ula North Wailua Ditch
dam (B3) to upstream from its confluence with Stable Storm
Ditch (B4). The 2019 seepage run on ‘Ili‘ili‘ula Stream (fig. 10,
map area B) consists of 12 measurement sites located between
altitudes of about 440 and 1,110 ft, with flows in the main stream
channel ranging from 0.21 to 13.0 ft/s. Results of the seepage
run show a net gain in the 1.2-mi reach from the Waiahi ‘Ili‘ili‘ula
Ditch dam (C2) to the North Intake Ditch dam (C9). The net gain
in the 3-mi reach between the North Intake Ditch dam (C9) and
the confluence of ‘Ili“ili‘ula and Waiahi Streams (C12) includes
unmeasured inflow from tributaries. The 2020 seepage run on
Waiahi Stream (fig. 10, map area C) consists of 13 measurement
sites located between altitudes of about 440 and 820 ft, with flows
in the main stream channel ranging from 13.1 to 74.2 ft3/s. The
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2020 seepage run on South Fork Wailua River (fig. 10) consists
of three measurement sites located between altitudes of about 240
and 430 ft, with flows in the main stream channel ranging from
54.9 to 131 ft3/s. The 2020 seepage-run measurements indicate a
net gain in the 0.3-mi reach of Waiahi Stream between continuous-
record low-flow station 16057900 near the upper powerhouse
(D3) and South Intake Ditch dam (D8) and in the 2.1-mi reach
between upper Lihu‘e Ditch dam (D16) and Hanama“ulu Ditch
intake (D20). The net gains in the 3.6-mi reach of Waiahi Stream
between South Intake Ditch dam (D8) and upper Lihu‘e Ditch
dam (D16), and in the measured reach on South Fork Wailua
River from the confluence of ‘Ili‘ili‘ula and Waiahi Streams

(E1) to continuous station 16060000 (ES) include unmeasured
inflows from tributaries. Seepage gains are presumed to originate
mainly from groundwater discharge from the thickly saturated
hydrogeologic setting.

The 1983 seepage run on South Fork Wailua River and
its tributaries (fig. 11, map areas B and C) consists of 30
measurement sites, located between altitudes of about 230
and 1,110 ft, with flows in the stream channel ranging from
0.15 ft3/s on “Ili‘ili‘ula Stream to 16.5 ft3/s on Waiahi Stream.
Results of the 1983 seepage run are comparable to those
of the 2019 and 2020 seepage runs, with lower magnitudes
of seepage gains in the selected reaches. Flow at Waikoko
Stream upstream from its confluence with ‘Ili‘ili‘ula Stream
(fig. 11, map area B) is the sum of discharges measured at
the confluence of Waikoko Stream and Stable Storm Ditch
(B6 and B7) and assumes no seepage gains and (or) losses
in the downstream reach. Flow at Waiahi Stream upstream
from Hanama‘ulu Ditch intake (D20; fig. 11, map area C) was
estimated from discharges measured at the transmission ditch
(C11) and Hanama‘ulu Ditch (D21).

Seepage-run measurements indicate that under the flow
conditions of the seepage runs, South Fork Wailua River flows
continuously from the ‘Ili‘ili‘ula North Wailua Ditch level to
continuous-record stream-gaging station 16060000 (ES) under
natural-flow conditions. During the base period (1961-2019),
the stream did not run dry at station 16060000, with the lowest
discharge at 7.6 ft3/s. Extrapolation of seepage rates on South Fork
Wailua River to the downstream unmeasured reach to determine
flow continuity to the ocean is not appropriate because the seepage
rates include unmeasured inflows from a number of tributaries.

Hanama‘ulu Stream

Previous seepage runs on Hanama‘ulu Stream were
conducted on October 9, 1996 (fig. 12), September 13, 1973, and
September 20, 1973 (fig. 13). The September 13, 1973, seepage
run did not consider flow contribution from the tributary at site
F8; thus, a subsequent seepage run was conducted a week later
that included flow from the tributary. The 1996 seepage run was
conducted under conditions when index station 16068000 was
flowing at about a Q,; discharge (daily mean of 23.0 ft3/s, table 2).
The first 1973 seepage run was conducted under conditions when
index station 16068000 was flowing at about a Q, discharge
(daily mean of 14.0 ft3/s, table 2), and the second 1973 seepage

run was conducted when index station 16068000 was flowing at
about a Q, discharge (daily mean of 24.0 ft3/s, table 2).

The 1996 seepage run (fig. 12) consists of four measurement
sites located between altitudes of about 110 and 360 ft, with flows
in the main stream channel ranging from 10.9 to 23.7 ft/s. The
1973 seepage run (fig. 13) consists of six measurement sites,
located between altitudes of about 90 and 200 ft, with flows in the
main stream channel ranging from 5.73 to 19.6 ft3/s. The 1996
seepage-run measurements indicate a generally gaining reach
from sites F3 to F7 and the 1973 seepage-run measurements
indicate a generally gaining reach from sites F4 to F9. Flow
contributions from major tributaries to the measured reach were
considered in the calculation of seepage gains and losses. The
measured gains were most likely from groundwater discharge
from the thickly saturated hydrogeologic setting. Both seepage
runs were conducted under diverted-flow conditions. The
headwaters of Hanama‘ulu Stream flow into Kapaia Reservoir,
which regulates downstream flow in the main stream channel.
Several tributaries, which may be affected by return flows from
the upper and lower Lihu‘e Ditches, flow into the 3.3-mi stream
reach downstream from the reservoir. Seepage-run discharge
measurements are not available within this reach because
many areas may have been inaccessible owing to surrounding
vegetation of the stream channel.

Results of these previous seepage runs indicate seepage-
gain rates in the measured reaches. Extrapolation of seepage
rates to the downstream unmeasured reach for determining
flow continuity from mauka to makai would assume that the
downstream unmeasured stream reach is also gaining. With
this assumption, and under flow conditions of the seepage runs,
including flow regulation by Kapaia Reservoir, Hanama‘ulu
Stream flows continuously from site F3 to the ocean.

Nawiliwili Stream

Discharge measurements from two seepage runs are
available to characterize seepage gains and losses in selected
reaches of Nawiliwili Stream. The September 12, 2019,
seepage run (fig. 14) was conducted during conditions when
nearby long-term station 16068000 was flowing at about a Q,,
discharge (daily mean of 18.6 ft3/s, table 2). The October 9,
1996, seepage run (fig. 15) was conducted during conditions
when nearby station 16068000 was flowing at about a Q,
discharge (daily mean of 23.0 ft3/s, table 2).

The 2019 seepage run (fig. 14) consists of eight measure-
ment sites located between altitudes of about 90 and 230 ft,
with flows in the main stream channel ranging from 1.54 to
5.86 ft3/s. The seepage run was conducted under natural-flow
conditions; all the flow diverted at a stream-diversion intake
near an altitude of about 195 ft (G2) was returned to the
stream at sites G6 and G7. Discharge measurements indicate
a net gain in the 0.5-mi reach between the uppermost site (P9)
and downstream from the diversion intake at site G3, and a
net loss in the 1.8-mi reach downstream from the intake (G3)
to about 1.7 mi upstream from the stream mouth (G9). Flow
contribution from a tributary just upstream of site G8 was not
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considered in the calculation of seepage loss; therefore, the
indicated seepage loss may be underestimated. The measured
gain in the upper reach was most likely from groundwater
discharge from the thickly saturated hydrogeologic setting.
Downstream from site G9, the stream was either inaccessible
or unmeasurable owing to the surrounding vegetation of the
stream channel. Flow was observed in the stream about 0.9 mi
upstream from the stream mouth during the seepage run.

The 1996 seepage run (fig. 15) consists of five measurement
sites located between altitudes of about 140 and 230 ft, with
flows in the main stream channel ranging from 0.51 to 4.41 ft3/s.
The seepage run was conducted under diverted conditions and
the magnitude of measured gains in the upper stream reach
between sites P9 and G5 is substantially lower than that from the
2019 seepage run. Seepage gains were measured in the lower
stream reach between sites G5 and G8 during the 1996 seepage
run, although potential unmeasured tributary flow may have
contributed to the apparent gain in this reach. No substantial net
gain or loss was measured in the same stream reach during the
2019 seepage run.

To determine flow continuity from mauka to makai on
Nawiliwili Stream, the seepage rate of —1.1 (ft/s)/mi in the stream
reach between sites G8 and G9 for the 2019 seepage run was
extrapolated to the 1.9-mi stream reach downstream from the
measured reach for the seepage run, with a computed seepage loss
of 2.09 ft3/s within this reach. This loss would be less than the flow
of 5.01 ft3/s measured at site G9; therefore, with this assumption
and under flow conditions of the seepage-run measurements,
Nawiliwili Stream flows continuously from an altitude of about
230 ft (P9) to the ocean under natural-flow conditions.

Hulé‘ia Stream

Discharge measurements from two seepage runs are
available to characterize seepage gains and losses in selected
reaches on Hul&‘ia Stream. The November 14, 2019, seepage
run (fig. 16) was conducted during conditions when long-term
station 16068000 was flowing at about a Q,, discharge (daily
mean of 22.5 ft3/s, table 2). The October 8, 1996, seepage
run (fig. 17) was conducted during conditions when station
16068000 was flowing at about a Q,, discharge (daily mean of
24.0 ft3/s, table 2). Both seepage runs were conducted under
diverted-flow conditions; flows in the upper tributaries were
diverted by several interconnected ditches. No dry reaches in
the main stream channel were observed during the seepage runs.

The 2019 seepage run (fig. 16) consists of six measurement
sites located between altitudes of about 240 and 480 ft, with flows
in the main stream channel ranging from 17.3 to 24.6 ft3/s. The
1996 seepage run (fig. 17) consists of nine measurement sites
located between altitudes of about 30 and 550 ft, with flows in
the main stream channel ranging from 1.33 to 10.6 ft%/s. Results
of both seepage runs indicate a generally gaining stream in the
measured reaches. Discharge measurements collected during
the 2019 seepage run indicate a gain of 6.3 ft3/s in the 2.7-mi
measured reach between sites H6 and H9; however, three minor
tributaries—collectively 0.65 mi® or less than 2 percent of the
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Hulg‘ia drainage area—were not measured during the seepage
run. Discharge measurements collected during the 1996 seepage
run indicate a generally gaining stream between sites H2 and
H12, although potential unmeasured tributary flows may have
contributed to the apparent gain in some reaches. Measured gains
were most likely from groundwater discharge from the thickly
saturated hydrogeologic setting.

Extrapolation of seepage rates to the downstream
unmeasured reach for determining flow continuity from mauka
to makai would assume that the downstream unmeasured
stream reach is also gaining. With this assumption, and under
the flow conditions of the seepage runs, Hulé‘ia Stream flows
continuously from site H2 to the ocean under natural-flow
conditions.

Waikomo Stream

A seepage run was conducted on January 22, 2020, on
Waikomo Stream as part of this study (fig. 18) with no available
discharge measurements from previous seepage runs. The
seepage run was conducted during conditions when long-term
station 16068000 was flowing at above the median discharge
(daily mean of 37.4 ft/s, table 2). The seepage run consists
of five measurement sites located between altitudes of about
40 and 210 ft, with flows in the main stream channel ranging
from 15.5 to 18.8 ft3/s. During the seepage run, flow in the
upper tributaries was diverted by several ditches and flow from
Waita Reservoir (fig. 5) was discharged to Waikomo stream
downstream from site I1. A golf course located near site I3
diverted streamflow (measured at site [4) to maintain water level
in a pond within the golf course. According to a representative
of the golf course, all of the diverted flow was returned to the
stream about 800 ft downstream from the diversion intake.
Unfortunately, the return flow could not be quantified owing
to lack of a usable discharge-measurement section; the return
flow was discharged vertically upward through a pipe partly
covered with boulders in the stream to mimic a small waterfall
on the left streambank. Discharge measurements indicate a net
loss in the 1-mi reach upstream from the golf course diversion.
The measured loss most likely discharged to the underlying
freshwater-lens hydrogeologic setting.

To determine flow continuity from mauka to makai on
Waikomo Stream, the seepage rate of —0.1 (ft3/s)/mi in the stream
reach between sites I3 and I5 was extrapolated to the 0.2-mi
stream reach downstream from the measured seepage-run reach,
with a computed seepage loss of 0.02 ft3/s within this reach. The
lower unmeasured reach of Waikomo Stream is within the same
hydrogeologic setting as the measured reach—a freshwater-lens
setting (fig. 4) where the groundwater level is below stream
altitude and the stream typically discharges to the groundwater
body—which suggests that the lower unmeasured reach is most
likely a losing reach. With this assumption, and under the flow
conditions of the seepage run, which includes a substantial amount
of flow contribution from Waita Reservoir, Waikomo Stream flows
continuously from site 12 to the ocean. A seepage run conducted
under lower flow conditions is needed to determine whether
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46 Low-Flow Characteristics of Streams from Wailua to Hanapépé, Kaua‘i, Hawai'i

Waikomo Stream—January 22, 2020, seepage-run results 199°40 199°20

59°29' 22°10' —

2T KAUA1

22°00' —

Map area

159°30'

! Station number and name associated with map identifier (ID)

[Res, Reservoir; Rd, Road; mi, mile; US, upstream; div, diversion; Str, Stream;
Hwy, Highway. Database limitations preclude the use of Hawaiian diacritical
marks in USGS station names]

21°56' —

MapID  Station number Station name, Kauai, HI
11 215421159280101  Waita Res spillway at Maluhia Rd
12 215414159280201  Waikomo Stream at Koloa Rd
13 215335159275501  Waikomo Stream 1mi US mouth
. 14 215258159280301  Golf course div on Waikomo Str
59°28° 5 215336159275501  Waikomo Stream at Poipu Rd

P15 215608159285801 Omao Stream at Kaumualii Hwy
P16 215538159292301  Poeleele Stream at Kaumualii Hwy

21°55'

EXPLANATION

Line of equal altitude relative to mean |
sea level, in feet—Contour interval
varies

——— Hydrologic-unit boundary—From State
of Hawai'i (2017a)

- === Diversion system

-3.2(-3.2) Measured seepage run stream reach—
- Net seepage gain (+) or loss (-) in
cubic feet per second (ft¥/s) per mile 21754’ —
and total seepage gain or loss, in ft¥/s
(shown in parentheses), for stream
reach between two main stream
channel sites
aDiverted water at site 14 was
assumed to be returned upstream of
site 15.

Stream reach not surveyed during the

seepage run
P15@  Partial-record site—Labeled with

map ID 21°63' —

Seepage-run discharge-measurement
site—Labeled with map ID and
discharge in ft¥/s

12(18.8) A Main stream channel

11 (+5.76) A Ditch—(-) diversion of flow or (+) return
flow

Base modified from U.S. Geological Survey digital ? Ois 1‘ MILE
data. Universal Transverse Mercator projection, [ [ I
zone 4, North American Datum 1983. 0 0.5 1 KILOMETER

Figure 18. Map of measurement sites and results for the January 2020 seepage run on Waikomo Stream, Kaua'i, Hawai'i



Waikomo Stream flows continuously when flow contributions
from Waita Reservoir are reduced.

Lawa'i Stream

Discharge measurements from two seepage runs are available
to characterize seepage gains and losses in selected reaches of
Lawa‘i Stream. The September 19, 2019, seepage run (fig. 19)
was conducted during conditions when discharge measured at
short-term station 16052400 (J1) was flowing at 0.52 ft3/s, which
is about a Q, discharge (station 16052400 in table 2). Discharges
measured at sites J4 and J14 during the seepage runs indicate that
results from 2019 are representative of lower flow conditions
than those from the October 7, 1996, seepage run (fig. 20). Both
seepage runs were conducted under diverted-flow conditions; flow
in Lawa‘i Stream was diverted by the Lawa‘i Intake Ditch near an
altitude of about 590 ft.

The 2019 seepage run consists of 12 measurement sites
located between altitudes of about 40 to 600 ft, with flows in
the main stream channel ranging from 0.08 to 0.52 ft3/s. Results
from the seepage run indicate a generally gaining stream in the
3.7-mi reach downstream from Lawa‘i Intake Ditch (J3). Flow
contribution from major tributaries to the stream was considered
in the calculation of seepage gains and losses for the 2019 seepage
run. The 1996 seepage run consists of four measurement sites
located between altitudes of about 40 to 590 ft, with flows in
the main stream channel ranging from 0.67 to 1.15 ft3/s. Flow
contribution from spring input at site J12 was not considered
during the 1996 seepage run; thus, the actual seepage gain is less
than computed.

To determine flow continuity from mauka to makai on
Lawa‘i Stream, the seepage rate of 0.03 (ft3/s)/mi in the stream
reach between sites J13 and J14 for the 2019 seepage run was
extrapolated to the 0.9-mi stream reach downstream from the
measured reach for the seepage run as both reaches are in a similar
hydrogeologic setting. Seepage-run discharge measurements
indicate that under flow conditions of the seepage-run discharge
measurements, Lawa‘i Stream flows continuously from site J1
(station 16052400) to the ocean under natural-flow conditions.

Wahiawa Stream

Two seepage runs were conducted on Wahiawa Stream
as part of this study (fig. 21) with no available discharge
measurements from previous seepage runs. The November 12,
2019, seepage run was conducted during conditions when
discharge measured at the partial-record site (P17) was
flowing at 1.85 ft3/s, which is about a Q,, discharge (table 5).
The seepage run consists of seven measurement sites located
between altitudes of about 220 and 1,720 ft, with flows in the
main stream channel ranging from 0.06 to 2.39 ft3/s. During
the seepage run, streamflow was unstable while collecting
measurements at sites K6 and K7; thus, repeat discharge
measurements were collected at these sites on January 24,
2020, to determine gains and losses in the lower 1.3-mi reach.
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The headwaters of Wahiawa Stream discharge into Alexander
Reservoir and discharge at site K4 represented leakage from
the reservoir into the stream. The 2020 seepage run was
conducted during conditions when flow was released from
the reservoir into the stream upstream from site K6. Stage
measurements recorded during the time the two discharge
measurements were collected indicate stable-flow conditions.
Results from the 2019 and 2020 seepage runs indicate net
gains in the 0.3-mi reach upstream from the reservoir and the 5.1-mi
reach downstream from the reservoir. The reach downstream of site
K6 to the coast is in a uniform hydrogeological setting (Izuka and
others, 2018), and the seepage rate between sites K6 and K7 was
used to characterize the seepage rate downstream of site K7 to the
coast. Seepage-run discharge measurements indicate that under the
flow conditions of the seepage run, including flow regulation by
Alexander Reservoir, Wahiawa Stream flows continuously from site
K4 to the ocean.

Hanapépé River

Discharge measurements from two seepage runs are available
to characterize seepage gains and losses on selected reaches of
Hanapépe River. The September 21, 2017, seepage run (fig. 22)
was conducted under conditions when discharge measured at site
L4 was 48.0 ft3/s, which is about a Q, discharge (station 16049000
in table 2). The October 10, 1996, seepage run (fig. 23) was
conducted under conditions when discharge measured at site L4
was 17.7 ft3/s, which is below a Q,, discharge (station 16049000
in table 2). Both seepage runs were conducted under diverted-
flow conditions; flow in the upper tributaries was diverted by the
Ko¢ula Ditch stream-diversion intakes during the 1996 seepage run
and flow in the lower reaches was diverted by the Farmers Ditch
stream-diversion intake during both seepage runs.

The 2017 seepage run (fig. 22) consists of eight
measurement sites located between altitudes of about 10
to 550 ft, with flows in the main stream channel ranging from
20.8 to 48.0 ft3/s. Measured discharges from the seepage run
indicate a generally gaining stream in the upper 3.3-mi reach
between the confluence of left and right branch Ko‘ula Rivers
(L1 and L2) and continuous station 16049000 (L4), with several
tributaries possibly contributing to some of the measured gain
within this reach. This upper stream reach is situated within a
dike-impounded-groundwater setting where the stream generally
gains flow from groundwater discharge. The lower 3.5-mi reach
between continuous station 16049000 (L4) and about 1.7 mi
upstream from the stream mouth (L11) generally lost flow.
Measured losses in the lower reach are within the measurement-
error bounds (see Limitations of Approach section). The 1996
seepage run (fig. 23) consists of seven measurement sites
located between altitudes of about 20 to 220 ft, with flows in the
main stream channel ranging from 1.39 to 19.9 ft%/s. Measured
discharges from the seepage run indicate a net gain in the lower
2.3-mi reach between continuous station 16049000 (L4) and
L5 and in the 1-mi reach between sites L8 and L12, and a net
loss in the 0.5-mi reach between sites L5 and L8, which may be
attributed to an unmeasured diversion within this reach.
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Lawa‘i Stream—September 19, 2019, seepage-run results

159°40" 159°20"
I I

159°30'
159°31' I

22°10' = !

KAUA'

22°00' [—

Map area

Station number and name associated with map identifier (ID)

[RB, Right Branch; ft, feet; US, upstream; trib, tributary; Str, Stream; DS, downstream; mi,
mile; Hwy, Highway; Rd, Road; NTBG, National Tropical Botanical Garden; nr, near. Database
limitations preclude the use of Hawaiian diacritical marks in USGS station names]

MapID  Station number Station name, Kauai, HI .
J 16052400 RB Lawai Stream 300ft US of fork 32 (0.14) 2\ I (0-52) +0.64 (0.09)
J2 215614159303101  Lawai trib US Lawai Ditch 14(008) J3(-0.67)
J3 215610159302901  Lawai Ditch intake on Lawai Str . ’
4 215609159302901  Lawai Str DS Lawai Ditch intake 21756 +0:06 (0.04)
J5 215544159302901  Lawai Str.2mi US Kaumualii Hwy
J8 215508159301701  Lawai Str .7 mi DS Kaumualii Hwy
J9 215436159303101  Lawai Str.1 mi US spring input trib 35 (0.12)
J10 215436159303201  Lawai trib .8 mi DS Waha Rd +0.04(0.04
J11 215434159303401  Lawai Str US spring input 04 (0.04)
J12 215433159303701  Trib with spring input to Lawai Str
J13 215431159303601  Lawai Str near NTBG
J14 16052500 Lawai Str nr Koloa
EXPLANATION
Line of equal altitude relative to mean sea
level, in feet—Contour interval varies
Hydrologic-unit boundary—From State of
Hawai'i (2017a)

- - -~ Diversion system +0.33 (0.02)

+0.06 (0.04) Measured seepage run stream reach— \ -0.11 (-0.01)

_— Net seepage gain (+) or loss (-) in cubic feet
per second (ft/s) per mile and total seepage
gain or loss, in ft*/s (shown in parentheses),
for stream reach between two main stream
channel sites

Stream reach not surveyed during the 21°54' —
seepage run

Seepage-run discharge-measurement site—
Labeled with map ID and discharge in ft¥/s
aStreamgaging station 16052400 with
flow-duration discharge estimates in table 2

J1(0.52) A Main stream channel
J2(0.14) A Tributary to main stream
J3(-0.67) A Ditch—(-) diversion of flow or (+) return flow
/\ Site from another seepage run

J14(0.23)

1 MILE

Base modified from U.S. Geological Survey digital | |

0
|
data. Universal Transverse Mercator projection, [ I I
zone 4, North American Datum 1983. 0 0.5 1 KILOMETER

Figure 19. Map of measurement sites and results for the September 2019 seepage run on Lawa'i Stream, Kaua'i, Hawai'i.



Results and Discussion

Lawa‘i Stream—OQOctober 7, 1996, seepage-run results

159°40' 159°20"
I I

159°31'

22°10' — !

KAUA‘

22°00' =

Map area

Station number and name associated with map identifier (ID)

[RB, Right Branch; ft, feet; US, upstream; Str, Stream; DS, downstream; Hwy,
Highway, trib, tributary; Rd, Road; nr, near. Database limitations preclude the use of
Hawaiian diacritical marks in USGS station names]

MapID  Station number Station name, Kauai, HI U4 (0.68)
J1 16052400 RB Lawai Stream 300ft US of fork 21956 —
J4 215609159302901 Lawai Str DS Lawai Ditch intake
J6 215535159303101  Lawai Str at Kaumualii Hwy -0.01 (-0.01)
J7 215514159304901  Lawai trib on Lauoho Rd
J14 16052500 Lawai Str nr Koloa

EXPLANATION

Line of equal altitude relative to mean sea
level, in feet—Contour interval varies

Hydrologic-unit boundary—From State of
Hawai'i (2017a)

- === Diversion system

+0.1 (0.26) Measured seepage run stream reach—

= T T Netseepage gain (+) or loss (-) in cubic feet
per second (ft*/s) per mile and total seepage
gain or loss, in ft¥/s (shown in parentheses),
for stream reach between two main stream
channel sites. Dashed where seepage rates
include unmeasured inflows within stream
reach

Stream reach not surveyed during the
seepage run

Seepage-run discharge-measurement site—
Labeled with map ID and discharge in ft¥/s
aStreamgaging station 16052400 with
flow-duration discharge estimates in table 2

J4(0.68) A Main stream channel
J7(0.22) A Tributary to main stream
/\  Site from another seepage run

\
21°54' — \N_7A 14 (115)

1 MILE
| |

0.5 1KILOMETER

Base modified from U.S. Geological Survey digital
data. Universal Transverse Mercator projection,
zone 4, North American Datum 1983.

o—To

Figure 20. Map of measurement sites and results for the October 1996 seepage run on Lawa'i Stream, Kaua'i, Hawai'i.
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Wahiawa Stream—November 12, 2019, and January 24, 2020, seepage-run results

159°40' 159°20'
I I
159°30'
|
22°10' - —
KAUA‘
22°00' [— —
Map area
| |
|
Station number and name associated with map identifier (ID) 21°58' — —  P17(1.85Y)
[US, upstream; Res, Reservoir; LB, Left Branch; Str, Stream; ft, feet; mi, mile; +1(4 (0-43) P18 (0 11h)
DS, downstream; conf, confluence; w, with; Hwy, Highway; Rd, Road. Database '
limitations preclude the use of Hawaiian diacritical marks in USGS station 159°32 K3 (2.39°)
names|
| K5 (0.07) I Alexander Reservoir
MapID  Station number Station name, Kauai, HI ' b /\
P17 215751159311801  Wahiawa Stream US Alexander Res K4 (0.06°)

P18 215754159311601 LB Wahiawa Str 400 ft US Alexander Res

K3 215745159311901  Wahiawa Str .13mi DS confw LB

K4 215723159314801  Wahiawa Str .38 mi DS Alexander Res

K5 215723159314901  Wahiawa tributary DS Alexander Res

K6 215518159325601  Wahiawa Str at Kaumualii Hwy EXPLANATION

K7 215438159334401  Wahiawa Str .8mi US Halewili Rd . . .
Line of equal altitude relative to mean sea

level, in feet—Contour interval varies

Hydrologic-unit boundary—From State of
Hawai'i (2017a)

- === Diversion system

+1.4 (0.43) Measured seepage run stream reach—

- Net seepage gain (+) or loss (-) in cubic feet
per second (ft*/s) per mile and total seepage
gain or loss, in ft¥/s (shown in parentheses),
for stream reach between two main stream

S channel sites
159°34° K6.40.28", 7.919) @S‘N 2January 24, 2020, discharges used in
| calculation

AT Stream reach not surveyed during the

-, =304 (0.47 seepage run
AR ! Seepage-run discharge-measurement site—

S K7 (1,52, 8.389 s Labeled with map ID and discharge in ft’/s.

n ‘, Site with map ID starting with “P” is a
partial-record site
®Discharge measured on November 12, 2019
Discharge measured on January 24, 2020

K4 (0.06) A Main stream channel
K5(0.07) A Tributary to main stream

+0.04 (0.15)
21°56' —

N
N
QU
of
Q&
;

N

-~

21°54' — —

Base modified from U.S. Geological Survey digital
data. Universal Transverse Mercator projection,
zone 4, North American Datum 1983.

1 2 MILES
|

I I
1 2 KILOMETERS

Figure 21. Map of measurement sites and results for the November 2019 and January 2020 seepage run on Wahiawa Stream, Kaua'i, Hawai'i.



Hanapépé River—September 21, 2017, seepage-run results

159°40' 159°20'

22°10' —

KAUA'

22°00' [~
Map area

159°34'

EXPLANATION

Line of equal altitude relative to mean sea
leve, in feet—Contour interval varies

22°00' —

Hydrologic-unit boundary—From State of
Hawai'i (2017a)

Diversion system

Measured seepage run stream reach—
Net seepage gain (+) or loss (-) in cubic
feet per second (ft¥/s) per mile and total
seepage gain or loss, in ft¥/s (shown in
parentheses), for stream reach between
two main stream channel sites. Dashed
where seepage rates include
unmeasured inflows within stream reach

Stream reach not surveyed during the
seepage run

Seepage-run discharge-measurement
site—Labeled with map ID and
discharge in ft¥/s
aNatural flow-duration discharge
estimates in table 2

+2.9 (9.6)

21°68' —

L4 (48.0) A
L2(13.6) A
L6 (-0.19) A

Main stream channel

Tributary to main stream 21°56' —

Ditch—(-) diversion of flow
or (+) return flow

Site from another seepage run

21°54' —

Base modified from U.S. Geological Survey digital
data. Universal Transverse Mercator projection,
zone 4, North American Datum 1983.

Figure 22.

Results and Discussion

159°30'

159°32°
22°20'

1 2 MILES
| |

I
1 2 KILOMETERS

o T o

Station number and name associated with map identifier (ID)
below; Str, stream; nr, near; Rv, River. Database limitations preclude the use of
Hawaiian diacritical marks in USGS station names]

MapID Station number Station name, Kauai, HI

L1 215921159314101  RB Koula River US Koula Ditch

L2 215916159313701 LB Koula River DS Manawaiopuna Falls
L3 16048000 Manuahi Str at Koula nr Eleele

L4 16049000 Hanapepe Riv blw Manuahi Str nr Eleele
L6 215523159333701  Palama intake from Hanapepe River

L7 215519159335101  Palama Ditch return 1 to Hanapepe Rv
L10 215515159335901  Ditch before split to Farmers and Pump 3
L11 215501159342801  Hanapepe River nr Kapa Reservoir

Map of measurement sites and results for the September 2017 seepage run on Hanapépé River, Kaua'i, Hawai'i.
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[RB, Right Branch; US, upstream; LB, Left Branch; DS, downstream; Riv, River; blw,
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Hanapépé River—October 10, 1996, seepage-run results

159°40' 159°20'

22°10' —

159°32'

KAUA -

22°00' [—

Map area

159°34'

EXPLANATION

Line of equal altitude relative to mean sea
level, in feet—Contour interval varies

Hydrologic-unit boundary—From State of
Hawai'i (2017a)

Diversion system

Measured seepage run stream reach—
Net seepage gain (+) or loss (-) in cubic
feet per second (ft¥/s) per mile and total
seepage gain or loss, in ft¥/s (shown in
parentheses), for stream reach between
two main stream channel sites. Dashed
where seepage rates include
unmeasured inflows within stream reach

22°00' —

+1.0 (2.2)

21°68' —

Stream reach not surveyed during the
seepage run

Seepage-run discharge-measurement
site—Labeled with map ID and
discharge in ft¥/s
aNatural flow-duration discharge

estimates in table 2 2 +1;0 (2.2) 7,
A"

L4 (17.7) A 2
L13(0.16) A

L9 (16.4) A

Main stream channel

Tributary to main stream 21°56' —
Ditch, (-) diversion of flow
or (+) return flow

A

Site from another seepage run L8 (1.39)

L9 (-16.4)
+0.2 (0.25)

159°30'

1 2 MILES
| |

I
1 2 KILOMETERS

o - O

Station number and name associated with map identifier (ID)

[Riv, River; blw, below; Str, Stream; nr, near; US, upstream; DS, downstream,; ft, feet;
Gl, Gulch; conf, confluence. Database limitations preclude the use of Hawaiian
diacritical marks in USGS station names]

21°54' — Map ID Station number Station name, Kauai, HI
L4 16049000 Hanapepe Riv blw Manuahi Str nr Eleele
L5 215532159333201  Hanapepe Riv US Palama intake
L8 215519159335501  Hanapepe Riv DS Farmers Ditch intake
L9 215518159335501  Farmers Ditch from Hanapepe Riv
Base modified from U.S. Geological Survey digital 112 215459159344601 Hanapepe Riv 250 ft DS Pump 1 Ditch
data. Universal Transverse Mercator projection, L13 215502159345801  Kapahili Gl at Farmers Ditch
zone 4, North American Datum 1983. L14 215456159350001  Kapahili GI US Hanapepe Riv conf

Figure 23.

Map of measurement sites and results for the October 1996 seepage run on Hanapépé River, Kaua'i, Hawai'i.



To determine flow continuity from mauka to makai
on Hanapépé River, the seepage rate of 0.2 (ft3/s)/mi in the
stream reach between sites L8 and L12 for the 1996 seepage
run was extrapolated to the 1.3-mi stream reach downstream
from the measured reach for the seepage run, with a computed
gain of 0.26 ft3/s within this reach. The 1996 seepage rate
between sites L8 and L12 was used to determine flow
continuity because it considered all inflows and outflows
within the measured reach. The reach downstream of site L12
to the coast is in a uniform hydrogeological setting (Izuka
and others, 2018), and the seepage rate between sites L8 and
L12 was used to characterize the seepage rate downstream of
site L12 to the coast. Seepage-run discharge measurements
indicate that under the flow conditions of the seepage run,
Hanapépé River flows continuously from the Ko‘ula Ditch
level to the ocean under natural-flow conditions. Under
diverted-flow conditions, when the Ko“ula Ditch intakes divert
all low flows in the river, the river may run dry downstream
from the intakes. The length of this potentially dry reach is
assumed to be relatively short because available records (water
years 1918-20, 1928-2019) at continuous station 16049000
(L4) indicate the river was not dry during the time the gage
was in operation and the lowest flow recorded was 5.3 ft/s.

Limitations of Approach

Low-flow duration discharges at partial-record sites in
the study area were estimated with MOVE.1 and graphical
record-augmentation techniques. For this study, the accuracy of
the estimates was largely dependent on (1) the strength of the
correlation between concurrent discharges at the index stations
and partial-record sites; (2) the number of discharge measurements
at the partial-record sites that were available for use in record
augmentation and the range of flow conditions represented by
the measurements; (3) the accuracy of the individual discharge
measurements; and (4) the appropriateness of the models used to
represent low-flow discharges.

Based on the regression diagnostics, the MOVE.1 regression
models provide accurate low-flow duration-discharge estimates.
For this study, acceptable values of correlation coefficients (r)
and modified Nash-Sutcliff coefficients of efficiency (E) are those
greater than or equal to 0.80 and 0.50, respectively. Coefficients
of efficiency (F) that indicate the predictive ability of the models
range from 0.51 to 0.64 and the correlation coefficients (») range
from 0.88 to 0.94. For right branch ‘Opaeka‘a Stream, north fork
Hanama‘ulu Stream, a branch of Ku‘ia Stream, and Hanapepe
River, the graphical fits were plotted through as many of the data
points as possible to accurately represent the correlation between
concurrent discharges at the index station and partial-record sites.
The arithmetic plots generally exhibit minimal spread around the
graphical fits without outliers.

The MOVE.1 regression models used to estimate low-flow
duration discharges are generally developed based on 10 or
more concurrent data points at the index stations and partial-
record sites. Models that are developed based on eight or nine
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concurrent data points—sites P2, P6+P7, and P17 (table 4)—
yielded satisfactory low-flow duration-discharge estimates with
values greater than or equal to 0.89 and E values greater than or
equal to 0.55. The graphical models were developed based on 10
or more concurrent data points at the index stations and partial-
record sites. Most of the discharge measurements used for record
augmentation at the partial-record sites generally are between
Q,, to Q,, flow conditions as indicated at the associated index
stations. Discharge measurements at Q,, flow conditions allow
for the statistical relations to be defined for the full range of
low-flow statistics to be estimated. Therefore, the flow-duration
estimates are considered to be representative of the low-flow
conditions at the partial-record sites.

Factors that could contribute to discharge-measurement
errors include, but are not limited to, the condition of the
measuring instrument and instrument error, characteristics
of the measurement cross section, spacing and number of
observation verticals in a cross section, changing stage during
the measurement, flow depth and velocity, and environment
(Rantz and others, 1982, p. 179-180). One of four ratings—
excellent, good, fair, or poor—is assigned to the measurement
to account for some of the aforementioned factors that could
potentially affect the accuracy of the measurement, and thus
provide some measure of quality for the discharge measurement.
For discharges measured with an ADV, the rating is based on
the Interpolated Variance Estimator (IVE) computed by the
measuring equipment. The IVE is an estimator of uncertainty
based on a statistical analysis of depth and velocity data
collected during the discharge measurement (Cohn and others,
2013). Discharge measurements with an IVE value of 2 percent
or less are generally rated excellent, between 2 and 5 percent
are rated good, between 5 and 8 percent are rated fair, and 8
percent or more are rated poor. Errors that result from changing
flow conditions are not considered by the IVE. Out of more
than 120 discharge measurements used in record augmentation
for this study, more than half of the measurements were rated
good, about a quarter were rated fair, about 16 percent were
rated excellent, and the remaining were rated poor. Ten of the
measurements were made during changing stage conditions of
less than +0.02 ft; six of these measurements were rated good,
two rated excellent, one rated fair, and one rated poor.

Low-flow duration discharges at index stations and partial-
record sites are applicable to the base period over which they
have been computed. For this study, 59 years of streamflow
data (water years 1961-2019) were available at the index
stations. Whether low-flow duration discharges at the index
stations provide estimates of streamflow characteristics at the
partial-record sites that are representative of future long-term
flow conditions is less certain. Low-flow duration discharges
computed from the base-period record are generally lower than
those computed from the longer-term record (table 2). At the six
active long-term continuous-record stream-gaging stations that
monitored natural flow, trends in annual total-flow and base-
flow statistics—Q,,, Q., and Q,, discharges and mean flow—
generally were downward. Trends in mean base flow were
statistically significant at the 5-percent level of significance
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for all stations. Whether the downward trends in total flow and
base flow of streams continue in the future is unknown, owing
to uncertainties associated with potential climate change and
watershed response to the changes. Extrapolation of low-flow
duration discharges to future conditions assumes that the
hydrologic conditions that occurred during the base period will
continue in the future.

Seepage gains and losses along selected study-area stream
reaches were computed as the difference between the upstream
and downstream discharges, excluding major tributary inflows and
diversions of water within the reach when measured. Considering
the potential errors in discharge measurements and that some
tributary inflows could not be measured owing to inaccessibility,
the estimated seepage gains and losses may not accurately reflect
the true gains and losses within a reach. Measured tributary
inflows and diversions of water introduce additional errors in the
seepage estimates, and this is especially apparent in the Waiahi
and ‘Ili‘ili‘ula Streams seepage runs. Direct measurement of
diverted flow and (or) inflow is preferred when estimating seepage
gains and losses along a reach. However, that may not always be
possible owing to lack of a representative discharge-measurement
section. Where a direct measurement of diverted flow and (or)
inflow could not be made because of a lack of usable measurement
section, discharges were measured upstream and downstream of
the diverted flow and (or) inflow and the difference is the flow of
interest. Errors associated with each additional measurement made
during a seepage run to quantify inflows and outflows collectively
decrease the accuracy of the seepage estimates.

Suggestions for Future Work

Measured discharges at many partial-record sites correlated
with discharges at the Lawa‘i short-term station (16052400)
established for this study. Reactivating the continuous station
on this stream for the long term would increase the level of
confidence of the estimated low-flow duration discharges at
relevant partial-record sites. Continued operation of the Waiahi
station (16057900) for the long term would increase the accuracy
of low-flow duration discharges computed for the station and
those at relevant partial-record sites. Accuracy of low-flow
duration discharge estimates at the partial-record sites could
also benefit from additional measurements, especially for North
Fork Wailua River and Hanama‘ulu and Wahiawa Streams.
Discharge measurements are needed at a different measurement
section on Nawiliwili Stream that is not affected by random
ditch-flow releases for estimating natural low-flow characteristics.
Accessible reaches of Pu‘ali Stream were limited during the study
period owing to streambank vegetation and streambed material.
If a usable measurement section on Pa‘ali Stream becomes
accessible in the future, additional discharge measurements would
improve the estimates of natural low-flow characteristics at the
measurement site. Additional natural-flow data at the Hanap&pé
River continuous-record stream-gaging station that span multiple
water years would increase accuracy and confidence in the
estimated low-flow duration discharges at the station.

Seepage runs that were made under diverted-flow
conditions could be improved by temporarily ceasing diversions
and conducting the seepage runs during natural-flow conditions.
However, a temporary halt in the operation of surface-water
diversions on a stream for the duration of a seepage run is
logistically challenging to the diverters and poses hardship on
the surface-water users; therefore, this approach is oftentimes
impractical. A seepage run conducted under diverted-flow
conditions requires discharge measurements made to quantify
diverted flow, which increases uncertainty in computed
seepage estimates. A seepage run conducted under natural-flow
conditions minimizes that uncertainty by eliminating the need
to quantify diverted flows, thereby producing more accurate
seepage estimates. Changes in diversion practices may occur
as the State continues to implement interim instream-flow
standards and temporarily stopping diversion of water for the
purpose of conducting a seepage run may become more feasible
in the future. Additional discharge measurements in the lower
reaches during seepage runs conducted under natural-flow
conditions could also help to improve the understanding of flow
continuity to the coast.

Summary and Conclusions

The State of Hawai‘i Commission on Water Resource
Management establishes instream-flow standards to describe
flows necessary to protect the public interest in the stream
with consideration of current and future water uses. Surface-
water resources in an area must be quantified to effectively
manage water resources for competing uses. The purpose of
this study was to characterize natural (unregulated) streamflow
availability under low-flow conditions for selected streams in
southeast Kaua‘i, Hawai‘i, which include North Fork Wailua
and South Fork Wailua Rivers; Hanama‘ulu, Nawiliwili,
Pi‘ali, Hulé‘ia, Waikomo, Lawa‘i, and Wahiawa Streams;
and Hanapépg River. The results of this study can be used by
water managers to develop technically sound instream-flow
standards for the study-area streams.

Low-flow characteristics under natural streamflow conditions
of the study-area streams were determined by analyzing historical
and current streamflow data from continuous-record stream-
gaging stations and miscellaneous sites, and additional data
collected at partial-record sites. Two short-term continuous-record
stream-gaging stations that monitored low flows on Waiahi
and right branch Lawa‘i Streams were established to serve as
additional index station options for partial-record sites in the study
area. A continuous-record stream-gaging station on Hanapepé
River monitored natural flow during calendar year 2017 and
the streamflow record during that period was used to estimate
low-flow characteristics at the station. Eighteen partial-record
sites—3 on main streams and 15 on tributary streams—were
established, mainly upstream from all existing surface-water
diversions, where discharge measurements were made between
February 2016 and January 2020. Along with the two short-term
stations established for this study, all six active continuous-record



stations that monitored natural flow on Kaua‘i—Kawaikot

Stream, Wai‘alae Stream, east branch of North Fork Wailua River,
left branch ‘Opaeka‘a Stream, Halaulani Stream, and Wainiha
Stream—were considered as potential index stations for estimating
Q,; (95-percent) to Q_, (median or 50-percent) flow-duration
discharges using the MOVE.1 and graphical-correlation record-
augmentation techniques.

At the Waiahi short-term continuous-record stream-
gaging station, the estimated natural Q, to Q. discharges
range from 14 to 25 ft3/s. At the Lawa‘i short-term
continuous-record stream-gaging station, the estimated natural
Q,; to Q,, discharges range from 0.35 to 3.0 ft3/s. At station
16049000 on Hanapépé River, low-flow duration discharges
for the base period range from 42 to 69 ft3/s.

Within the Wailua River basin, the estimated natural Q,
to Q,, discharges at the established partial-record sites range
from 0.48 to 1.1 ft3/s for right branch ‘Opaeka‘a Stream, 17
to 26 ft3/s for North Fork Wailua River, 2.5 to 7.4 ft3/s for the
confluence of north and south Fork Waikoko Streams, and
7.3 to 11 ft3/s for “li‘ili‘ula Stream. Within the Hanama‘ulu
Stream basin, the estimated natural Q,; to Q,, discharges at the
established partial-record sites range from 0.96 to 1.6 ft3/s for
the confluence of north and south fork Hanama‘ulu Streams
and 0.74 to 1.2 ft3/s for north fork Hanama‘ulu Stream. Within
the Hulé‘ia Stream basin, the estimated natural Q to Q.
discharges at the established partial-record sites range from 1.5
to 5.0 ft3/s for Paohia Stream, 4.1 to 11 ft3/s for Kamo‘oloa
Stream, 3.3 to 5.7 ft3/s for the north tributary Ku‘ia Stream, and
0.018 to 3.2 ft3/s for the south tributary of Ku‘ia Stream. The
estimated natural Q to Q,, discharges at the established partial-
record site on Wahiawa Stream range from 1.5 to 3.7 ft3/s.

Upper-bound estimates of low-flow duration discharges
at partial-record sites on south fork Hanama“‘ulu, Hanama‘ulu
tributary, ‘Oma‘o, and Po°ele‘ele Streams were estimated based
on the highest discharges measured during the study period
that correspond to the concurrent daily mean discharge at each
index station that were greater than the median discharge at
that index station, which were 0.44, 0.40, 0.19, and 0.22 ft3/s,
respectively. Measured discharges on Nawiliwili, Pt‘ali, and left
branch Wahiawa Stream do not correlate with discharges at any
active long-term continuous-record stream-gaging stations that
monitored natural flow and therefore flow-duration discharges
estimates are not available.

The discharge estimates are representative of the 59-year
base period—water years 1961 to 2019—over which they have
been computed. Based on the MOVE.]1 regression statistics and
the range of discharges measured at the partial-record sites (which
included the entire low-flow range of interest), the flow-duration
discharge estimates at the partial-record sites are considered
to be accurate and representative of base-period conditions.
Additional discharge measurements will help to increase the level
of confidence of the flow-duration discharge estimates at all the
partial-record sites. Whether low-flow duration discharges at the
index stations provide estimates of streamflow characteristics
at the partial-record sites that are representative of future long-
term flow conditions is less certain. At the six active long-term
continuous-record stream-gaging stations that monitored natural
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flow, trends in annual total-flow and base-flow statistics—

Q> Q,» and Q, discharges and mean flow—generally were
downward. Whether the downward trends in total flow and base
flow of streams will continue in the future is unknown as a result
of uncertainties associated with potential climate change and
watershed response to the changes.

Seepage-run discharge measurements together with low-flow
duration discharge estimates at the partial-record sites can provide
information on natural streamflow availability in the lower stream
reaches and indicate whether the streams support mountain-to-
ocean (mauka to makai) flow, which is important for assessing
the biological potential of a stream to support native stream fauna.
Seepage-run results from previous studies and from this study were
analyzed to characterize streamflow gains and losses on selected
reaches of streams in the study basins. Gaining and losing reaches
were determined by computing the difference between the upstream
and downstream discharges, excluding any tributary inflows and
diversions of water within the reach when measured. Available
seepage-run measurements show that the study-area streams are
generally gaining streams in the measured reaches, except for
Waikomo Stream and the lower reaches of North Fork Wailua River
and Nawiliwili Stream. Measured seepage-gain rates that considered
all inflows and outflows within the measured reaches ranged
between 0.03 and 24.3 ft3/s per mile of stream reach. Seepage gains
are presumed to originate mainly from groundwater discharge from
a thickly saturated hydrogeologic setting for streams in the Wailua
River, Hanama‘ulu Stream, Nawiliwili Stream, and Hulé‘ia Stream
basins, and from a dike-impounded-groundwater hydrogeologic
setting for streams in the Waikomo Stream, Lawa‘i Stream,
Wahiawa Stream, and Hanap&pe River basins. Under the flow
conditions of the seepage runs, a majority of the study-area streams
flow continuously from mauka to makai. Where a stream discharges
into a reservoir—Hanama‘ulu and Wahiawa Streams—a dry reach
may occur immediately downstream from the reservoir to the point
of seepage gain in the stream.
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